Skip to main content
Log in

Europium doped zinc sulfide: a correlation between experimental and theoretical calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This paper presents the correlation among electronic and optical property effects induced by the addition of different concentrations of europium (Eu3+) in zinc sulfide (ZnS) by microwave-assisted solvothermal (MAS) method. A shift of the photoluminescence (PL) emission was observed with the increase of Eu3+. The periodic DFT calculations with the B3LYP hybrid functional were performed using the CRYSTAL computer code. The UV–vis spectra and theoretical results indicate a decrease in behavior of the energy gap as a function of dopant concentration. Therefore, new localized states are generated in the forbidden band gap region, the new states increase the probability of less energy transitions which may be responsible for a red shift in the PL bands spectrum.

Figure

A shift of the photoluminescence emission was observed with the increase of Eu3+ in a ZnS matrix. Experimental and theoretical results indicate a decrease in behavior of the energy gap as a function of dopant concentration due to the new localized states in the forbidden band gap region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang C, Lin J (2012) Defect-related luminescent materials: synthesis, emission properties and applications. Chem Soc Rev 41:7938–7961

    Article  CAS  Google Scholar 

  2. Liu Y, Tu D, Zhu H, Li R, Luo W, Chen X (2010) A Strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv Mater 22:3266–3271

    Article  CAS  Google Scholar 

  3. Blasse G, Grabmaier BC (1994) Luminescence mater. Springer, Berlin

    Book  Google Scholar 

  4. Reisfeld RJ, Christian KJ (1977) Lasers and excited states of rare earths. Ber Bunsen Phys Chemie 82:844–844

    Google Scholar 

  5. Zhang K, Yu Y, Sun S (2012) Influence of Eu doping on the microstructure and photoluminescence of CdS nanocrystals. Appl Surf Sci 258:7658–7663

    CAS  Google Scholar 

  6. Sadhu S, Chowdhury PS, Patra A (2007) Understanding the role of particle size on photophysical properties of CdS:Eu3+ nanocrystals. J Lumin 126:387–392

    Article  CAS  Google Scholar 

  7. Wen X, Li M, Wang Y, Zhang J, Fu L, Hao R, Ma Y, Ai X (2008) Colloidal nanoparticles of a europium complex with enhanced luminescent properties. Langmuir 24:6932–6936

    Article  CAS  Google Scholar 

  8. Silva D, Abreu A, Davolos MR, Rosaly M (2011) Determination of the local site occupancy of Eu3+ ions in ZnAl2O4 nanocrystalline powders. Opt Mater 33:1226–1233

    Article  CAS  Google Scholar 

  9. Ekambaram S (2005) Effect of host-structure on the charge of europium ion. J Alloy Compd 390:L1–L3

    Article  CAS  Google Scholar 

  10. Sapra S, Prakash A, Ghangrekar A, Periasamy N, Sarma DD (2005) Emission properties of manganese-doped ZnS nanocrystals. J Phys Chem B 109:1663–1668

    CAS  Google Scholar 

  11. Biswas S, Kar S (2008) Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach. Nanotechnology 19

  12. Tran TK, Park W, Tong W, Kyi MM, Wagner BK, Summers CJ (1997) Photoluminescence properties of ZnS epilayers. J Appl Phys 81:2803–2809

    Article  CAS  Google Scholar 

  13. Ong HC, Chang RPH (2001) Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry. App Phys Lett 79:3612–3614

    Article  CAS  Google Scholar 

  14. Peng WQ, Qu SC, Cong GW, Wang ZG (2005) Concentration effect of Mn2+ on the photoluminescence of ZnS : Mn nanocrystals. J Cryst Growth 279:454–460

    Article  CAS  Google Scholar 

  15. Lee SY, Shin YH, Kim Y, Kim S, Ju S (2011) Thermal quenching behavior of emission bands in Eu-doped ZnS nanowires. J Luminescence 131:1336–1339

    Article  CAS  Google Scholar 

  16. Wang L, Xu X, Yuan X (2010) Preparation and photoluminescent properties of doped nanoparticles of ZnS by solid-state reaction. J Luminescence 130:137–140

    Article  CAS  Google Scholar 

  17. Ashwini K, Pandurangappa C, Nagabhushana BM (2012) Synthesis and optical properties of undoped and Eu-doped ZnS nanoparticles. Phys Scripta 85:065706

    Article  Google Scholar 

  18. Amaranatha Reddy D, Murali G, Poornaprakash B, Vijayalakshmi RP, Reddy BK (2012) Effect of annea ling temperature on optical and magnetic properties of Cr doped ZnS nanoparticles. Solid State Commun 152:596–602

    Article  CAS  Google Scholar 

  19. Planelles-Arago J, Julian-Lopez B, Cordoncillo E, Escribano P, Pelle F, Viana B, Sanchez C (2008) Lanthanide doped ZnS quantum dots dispersed in silica glasses: an easy one pot sol–gel synthesis for obtaining novel photonic materials. J Mater Chem 18:5193–5199

    CAS  Google Scholar 

  20. Thostenson ET, Chou TW (1999) Microwave processing: fundamentals and applications. Compos Part A Appl S 30:1055–1071

    Article  Google Scholar 

  21. Komarneni S, Roy R, Li QH (1992) Microwave-hydrothermal synthesis of ceramic powders. Mater Res Bull 27:1393–1405

    Article  CAS  Google Scholar 

  22. Cavalcante LS, Longo VM, Sczancoski JC, Almeida MAP, Batista AA, Varela JA, Orlandi MO, Longo E, Li MS (2012) Electronic structure, growth mechanism and photoluminescence of CaWO4 crystals. Cryst Eng Comm 14:853–868

    Article  CAS  Google Scholar 

  23. Raubach CW, de Santana YVB, Ferrer MM, Longo VM, Varela JA, Avansi W Jr, Buzolin PGC, Sambrano JR, Longo E (2012) Strutural and optical approach of CdS@ZnS core–shell system. Chem Phys Lett 536:96–99

    CAS  Google Scholar 

  24. de Santana YVB, Raubach CW, Ferrer MM, La Porta F, Sambrano JR, Longo VM, Leite ER, Longo E (2011) Experimental and theoretical studies on the enhanced photoluminescence activity of zinc sulfide with a capping agent. J Appl Phys 110:123507–123507

    Article  Google Scholar 

  25. Ferrer MM, de Santana YVB, Raubach CW, Sambrano JR, Longo E (2013) Experimental and theoretical studies of photoluminescence in ZnS obtained by microwave-assisted solvothermal method. Curr Phys Chem 3:413–418

    Article  CAS  Google Scholar 

  26. La Porta FA, Ferrer MM, de Santana YVB, Raubach CW, Longo VM, Sambrano JR, Longo E, Andrés J, Li MS, Varela JA (2013) Synthesis of wurtzite ZnS nanoparticles using the microwave assisted solvothermal method. J Alloy Compd 556:153–159

    Article  Google Scholar 

  27. Becke AD (1993) Density-functional thermochemistry.3. the role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  29. Dovesi RS, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco P, Llunell M (2009) Crystal09 user’s manual. University of Torino, Torino

    Google Scholar 

  30. Marana NL, Longo VM, Longo E, Martins JBL, Sambrano JR (2008) Electronic and structural properties of the (10(1)over-bar0) and (11(2)over-bar0) ZnO surfaces. J Phys Chem A 112:8958–8963

    CAS  Google Scholar 

  31. Moreira ML, Buzolin PGC, Longo VM, Nicoleti NH, Sambrano JR, Li MS, Varela JA, longo e joint experimental and theoretical analysis of order disorder effects in cubic BaZrO(3) assembled nanoparticles under decaoctahedral shape. J. Phys. Chem. A 115:4482–4490

  32. Sambrano JR, Longo VM, Longo E, Taft CA (2007) Electronic and structural properties of the (001) SrZrO3 surface. J Mol Struct (THEOCHEM) 813:49–56

    Article  CAS  Google Scholar 

  33. Sambrano JR, Nóbrega GF, Taft CA, Andrés J, Beltrán A (2005) A theoretical analysis of the TiO2/Sn doped (1 1 0) surface properties. Surf Sci 580:71–79

    Article  CAS  Google Scholar 

  34. Jaffe JE, Hess AC (1993) Hartree-fock study of phase changes in ZnO at high pressure. Phys Rev B 48:7903–7909

    Article  CAS  Google Scholar 

  35. Lichanot A, Aprà E, Dovesi R (1993) Quantum Mechnical Hartree-Fock Study of the Elastic Properties of Li2S and Na2S. Phys Status Solidi B 177:157–163

    Article  CAS  Google Scholar 

  36. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    CAS  Google Scholar 

  37. Durand P, Barthelat JC (1975) A theoretical method to determine atomic pseudopotentials for electronic structure calculations of molecules and solids. Theoret Chim Acta 38:283–302

    Article  CAS  Google Scholar 

  38. Eick HA, Baenziger NC, Eyring L (1956) The preparation, crystal structure and some properties of SmN, EuN and YbN1. J Am Chem Soc 78:5987–5989

    Article  CAS  Google Scholar 

  39. Eick HA, Baenziger NC, Eyring L (1956) Lower oxides of samarium and europium. the preparation and crystal structure of SmO0.4–0.6, SmO and EuO1. J Am Chem Soc 78:5147–5149

    Article  CAS  Google Scholar 

  40. Yeh CY, Lu ZW, Froyen S, Zunger A (1992) Zinc-blende-wurtzite polytypism in semiconductors. Phys Rev B 46:10086–10097

    Article  CAS  Google Scholar 

  41. Klug HP, Alexander LA (1962) X-ray diffraction procedures. Wiley, New York

    Google Scholar 

  42. Wood DL, Tauc J (1972) Weak absorption tails in amorphous semiconductors, Phys. Rev. B 5:3144-&

  43. Cavalcante LS, Sczancoski JC, Li MS, Longo E, Varela JA (2012) β-ZnMoO4 microcrystals synthesized by the surfactant-assisted hydrothermal method: growth process and photoluminescence properties. Coll Surf A: Phys Eng Asp 396:346–351

    Article  CAS  Google Scholar 

  44. Cavalcante LS, Almeida MAP, Avansi W, Tranquilin RL, Longo E, Batista NC, Mastelaro VR, Li MS (2012) Cluster coordination and photoluminescence properties of α-Ag2WO4 microcrystals. Inorg Chem 51:10675–10687

    Article  CAS  Google Scholar 

  45. Moreira ML, Longo VM, Avansi W, Ferrer MM, Andrés J, Mastelaro VR, Varela JA, Longo E (2012) Quantum mechanics insight into the microwave nucleation of SrTiO3 nanospheres. J Phys Chem C 116:24792–24808

    Article  CAS  Google Scholar 

  46. Willardson RK, Goering HL (1962) Compound semiconductors. Reinhold, New York

    Google Scholar 

  47. Longo VM, Cavalcante LS, de Figueiredo AT, Santos LPS, Longo E, Varela JA, Sambrano JR, Paskocimas CA, De Vicente FS, Hernandes AC (2007) Highly intense violet-blue light emission at room temperature in structurally disordered SrZrO(3) powders. Appl Phys Lett 90

  48. Moreira ML, Paris EC, do Nascimento GS, Longo VM, Sambrano JR, Mastelaro VR, Bernardi MIB, Andres J, Varela JA, Longo E (2009) Structural and optical properties of CaTiO(3) perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: an experimental and theoretical insight. Acta Mater 57:5174–5185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the support of the Brazilian research financing institutions: CAPES, FAPESP (2012/14468-1, 2012/22823-6 2012/07967-1, 2013/07296-2, 2013/19289-0), and CNPq (573636/2008-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio R. Sambrano.

Additional information

This paper belongs to Topical Collection QUITEL 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrer, M.M., de Santana, Y.V.B., Raubach, C.W. et al. Europium doped zinc sulfide: a correlation between experimental and theoretical calculations. J Mol Model 20, 2375 (2014). https://doi.org/10.1007/s00894-014-2375-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2375-5

Keywords

Navigation