Skip to main content
Log in

Topological analyses of time-dependent electronic structures: application to electron-transfers in methionine enkephalin

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have studied electron transfers (ET) between electron donors and acceptors, taking as illustrative example the case of ET in methionine enkephalin. Recent pulse and gamma radiolysis experiments suggested that an ultrafast ET takes place from the C-terminal tyrosine residue to the N-terminal, oxidized, methionine residue. According to standard theoretical frameworks like the Marcus theory, ET can be decomposed into two successive steps: i) the achievement through thermal fluctuations, of a set of nuclear coordinates associated with degeneracy of the two electronic states, ii) the electron tunneling from the donor molecular orbital to the acceptor molecular orbital. Here, we focus on the analysis of the time-dependent electronic dynamics during the tunneling event. This is done by extending the approaches based on the topological analyses of stationary electronic density and of the electron localization function (ELF) to the time-dependent domain. Furthermore, we analyzed isosurfaces of the divergence of the current density, showing the paths that are followed by the tunneling electron from the donor to the acceptor. We show how these functions can be calculated with constrained density functional theory. Beyond this work, the topological tools used here can open up new opportunities for the electronic description in the time-dependent domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Paul PM, Toma ES, Breger P, Mullot G, Augé F, Balcou P, Muller HG, Agostini P (2001) Science 292:1689–1692

    Article  CAS  Google Scholar 

  2. Goulielmakis E, Loh ZH, Wirth A, Santra R, Rohringer N, Yakovlev VS, Zherebtsov S, Pfeifer T, Azzeer AM, Kling MF, Leone SR, Krausz F (2010) Nature (London) 466:739–743

    Article  CAS  Google Scholar 

  3. Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, Ruchon T, Auguste T, Diveki Z, Breger P, Maquet A, Carré B, Taïeb R, Salières P (2010) Nat Phys 6:200–206

    Article  CAS  Google Scholar 

  4. Halász GJ, Perveaux A, Lasorne B, Robb MA, Gatti F, Vibók A (2012) Phys Rev A 86:043426–6

    Article  Google Scholar 

  5. Halász GJ, Perveaux A, Lasorne B, Robb MA, Gatti F, Vibók A (2013) Phys Rev A 88:023425–023427

    Article  Google Scholar 

  6. Neidel C, Klei J, Yang C-H, Rouzée A, Vrakking MJJ, Klünder K, Miranda M, Arnold CL, Fordell T, L’Huillier A, Gisselbrecht M, Johnsson P, Dinh MP, Suraud E, Reinhard PG, Despré V, Marques MAL, Lépine F (2013) Phys Rev Lett 111:033001–033005

    Article  Google Scholar 

  7. Runge E, Gross EKU (1984) Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  8. Andrade X, Alberdi-Rodriguez J, Strubbe DA, Oliveira MJT, Nogueira F, Castro A, Muguerza J, Arruabarrena A, Louie SG, Aspuru-Guzik A, Rubio A, Marques MAL (2012) J Phys: Condens Mat 24:233202–233211

    Article  Google Scholar 

  9. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) Comput Phys Commun 181:1477–1489

    Article  CAS  Google Scholar 

  10. Lopata K, Govind N (2011) J Chem Theor Comput 7:1344–1355

    CAS  Google Scholar 

  11. Cheng C-L, Evans JS, Van Voorhis T (2006) Phys Rev B 74:155112–11

    Article  Google Scholar 

  12. Evans JS, Cheng CL, Van Voorhis T (2008) Phys Rev B 78:165108–165111

    Article  Google Scholar 

  13. Evans JS, Van Voorhis T (2009) Nano Lett 9:2671–2675

    Article  CAS  Google Scholar 

  14. Chen H, Ratner MA, Schatz GC (2011) J Phys Chem C 115:18810–18821

    Article  CAS  Google Scholar 

  15. Silvi B, Savin A (1994) Nature 371:683–686

    Article  CAS  Google Scholar 

  16. Bader RFW (ed) (1994) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  17. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403

    CAS  Google Scholar 

  18. Machelska H (2007) Neuropeptides 41:355–363

    Article  CAS  Google Scholar 

  19. Henry B, Duty S, Fox SH, Crossmam AR, Brotchie JM (2003) Exp Neurol 183:458–468

    Article  CAS  Google Scholar 

  20. Thanavala V, Kadam VJ, Ghosh R (2008) Curr Drug Targets 9:887–894

    Article  Google Scholar 

  21. Smith HS (2008) Pain Physician 11:121–132

    Google Scholar 

  22. Terenius L et al (1976) Biochem Biophys Res Commun 71:175–179

    Article  CAS  Google Scholar 

  23. Grune T et al (2004) Int J Biochem Cell Biol 36:2519–2530

    Article  CAS  Google Scholar 

  24. Rabgaoui N, Slaoui-Hasnaoui A (1993) Torreilles. J Free Radic Biol Med 14:519–529

    Article  CAS  Google Scholar 

  25. Mozziconacci O, Mirkowski J, Rusconi F, Kciuk G, Wisniowski P, Bobrowski K, Houée-Levin C (2012) J Phys Chem B 116:9352–9362

    Google Scholar 

  26. Mozziconacci O, Mirkowski J, Rusconi F, Pernot P, Bobrowski K, Houee-Levin C (2007) Free Radic Biol Med 43:229–234

    Article  CAS  Google Scholar 

  27. Bergès J, Trouillas P, Houée-Levin C (2011) J Phys Conf Ser 261:012003

    Article  Google Scholar 

  28. Trouillas P, Bergès J, Houée-Levin C (2011) Int J Quant Chem 111:143–151

    Article  Google Scholar 

  29. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265–322

    Article  CAS  Google Scholar 

  30. Warren JJ, Ener AE, Vlček A Jr, Winkler JR, Gray HB (2012) Coord Chem Rev 256:2478–2487

    Article  CAS  Google Scholar 

  31. Gray HB, Winkler JR (2005) Proc Natl Acad Sci 102:3534–3539

    Article  CAS  Google Scholar 

  32. Migliore A (2011) J Chem Theor Comput 7:1712–1725

    CAS  Google Scholar 

  33. Cohen-Tannoudji C, Diu B, Laloe, F (1977) Quantum mechanics, vol. 1. Wiley, New York

  34. Stuchebrukhov AA (1996) J Chem Phys 104:8424–8432

    CAS  Google Scholar 

  35. Stuchebrukhov AA (2003) Theor Chem Accounts 110:291–306

    Article  CAS  Google Scholar 

  36. Stuchebrukhov AA (2003) J Theor Comput Chem 2:91–118

    CAS  Google Scholar 

  37. Antony J, Medvedev DM, Stuchebrukhov AA (2000) J Am Chem Soc 122:1057–1065

    Article  CAS  Google Scholar 

  38. Daizadeh I, Medvedev DM, Stuchebrukhov AA (2002) Mol Biol Evol 19:406–415

    Article  CAS  Google Scholar 

  39. Hayashi T, Stuchebrukhov AA (2010) Proc Natl Acad Sci 107:19157–19162

    Article  CAS  Google Scholar 

  40. Stuchebrukhov AA (1998) J Chem Phys 108:8499–8509

    CAS  Google Scholar 

  41. Stuchebrukhov AA (1998) J Chem Phys 108:8510–8520

    CAS  Google Scholar 

  42. Stuchebrukhov AA (2003) J Chem Phys 118:7898–7906

    CAS  Google Scholar 

  43. Löwdin P-O (1955) Phys Rev 97:1474–1489

    Article  Google Scholar 

  44. Stuchebrukhov AA (1996) J Chem Phys 105:10819–10829

    CAS  Google Scholar 

  45. de Andrade PCP (2012) Int J Quant Chem 112:3325–3332

    Article  Google Scholar 

  46. Wang J, Stuchebrukhov AA (2000) Int J Quantum Chem 80:591–597

    Article  CAS  Google Scholar 

  47. Daizadeh I, Guo J-X, Stuchebrukhov AA (1999) J Chem Phys 110:8865–8868

    CAS  Google Scholar 

  48. Stuchebrukhov AA (2000) Int J Quant Chem 76:13–26

    Google Scholar 

  49. Dobson JF (1993) J Chem Phys 98:8870–8872

    CAS  Google Scholar 

  50. Burnus T, Marques MAL, Gross EKU (2005) Phys Rev A 71:010501–010504

    Article  Google Scholar 

  51. Gillespie RJ (1972) Molecular geometry. Reinhold, London

    Google Scholar 

  52. Andres J, Berski S, Domingo LR, Polo V, Silvi B (2011) Curr Org Chem 10:3566–3575

    Article  Google Scholar 

  53. Kozlowski D, Pilmé J, Fleurat-Lessard P (2014) Mol Simul 40:185–195

    Article  CAS  Google Scholar 

  54. Jung YO, Lee JH, Kim J, Schmidt M, Moffat K, Šrajer V, Ihee H (2013) Nat Chem 5:212–220

    Article  CAS  Google Scholar 

  55. Castro A, Burnus T, Marques MAL (2007) Gross EKU in analysis and control of ultrafast photoinduced reactions. In: Ku ̈n O, Woste L (eds) Springer series in chemical physics 87. Springer, Heidelberg, Chapter 6.5

    Google Scholar 

  56. Bergès J, De Oliveira P, Fourré I, Houée-Levin C (2012) J Phys Chem B 116(31):9352–9362

  57. deMon2k, Köster AM, Calaminici P, Casida ME, Flores-Moreno R, Geudtner G, Goursot A, Heine Th, Ipatov A, Janetzko F, del Campo JM, Patchkovskii S, Ulises Reveles J, Salahub DR, Vela A. deMon developers 2006.

  58. Dederichs PH, Blügle S, Zeller R, Akai H (1984) Phys Rev Lett 53:2512–2515

    Article  CAS  Google Scholar 

  59. Kaduk B, Kowalczyk T, Van Voorhis T (2012) Chem Rev 112:321–370

    Article  CAS  Google Scholar 

  60. de la Lande A, Salahub DR, Köster AM (2012) Extending the application of constrained density functional theory to large molecular systems in concepts and methods in modern theoretical chemistry: electronic structure and reactivity. Taylor and Francis, Oxford, pp 201–219.

  61. de la Lande A, Salahub DR (2010) J Mol Struct (THEOCHEM) 943:115–120

    Article  Google Scholar 

  62. Řezáč J, Lévy B, Demachy I, de la Lande A (2012) J Chem Theor Comput 8:418–427

    Google Scholar 

  63. Hirshfeld FL (1977) Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  64. Van Voorhis T, Kowalczyk T, Kaduk B, Wang L-P, Cheng C-P, Wu Q (2010) Ann Rev Phys Chem 61:149–170

  65. Hoberhofer H, Blumberger J (2009) J Chem Phys 131:064101–064111

    Google Scholar 

  66. Köster AM, Reveles JU, del Campo JM (2004) J Chem Phys 121:3417–3424

    Google Scholar 

  67. Handy NC, Cohen AJ (2001) Mol Phys 99:403–412

    Article  CAS  Google Scholar 

  68. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  69. Calaminici P, Janetzko F, Köster AM, Mejia-Olvera R, Zuniga-Gutierrez B (2007) J Chem Phys 126:044108–044110

    Google Scholar 

  70. Krack M, Köster AM (1998) J Chem Phys 108:3226–3234

    CAS  Google Scholar 

  71. Wu Q, Van Voorhis T (2006) J Chem Phys 125:164105–164109

    Google Scholar 

  72. Ding F, Wang H, Wu Q, Van Voorhis T, Chen S, Konopelski JP (2010) J Phys Chem A 114:6039–6046

    Article  CAS  Google Scholar 

  73. Hoberhofer H, Blumberger J (2010) J Chem Phys 133:244105–244110

    Google Scholar 

  74. Chiode S, Russo N (2008) J Comput Chem 29:912–920

    Article  Google Scholar 

  75. Marcotte I, Separovic F, Auge M, Gagne SM (2004) Biophys J 86:1587–1600

    Article  CAS  Google Scholar 

  76. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  77. Kozlowski D, Pilmé J (2011) J Comput Chem 32:3207–3217

    Article  CAS  Google Scholar 

  78. Tang W, Sanville E, Henkelman G (2009) J Phys Condens Matter 21:084204

    Article  CAS  Google Scholar 

  79. Henkelman G, Arnaldsson A, Jónsson H (2006) H Comput Mater Sci 36:254–360

    Google Scholar 

  80. Esler KP (2014) Spline libraries and documentation can be found at http://einspline.sourceforge.net/index.shtml

  81. a) Beratan DN, Onuchic, JN, Hopfield JJ (1987) J Chem Phys 86:4488–4498, b) Beratan DN, Betts JN, Onuchic JN (1991) Science 252:1285–1288.

  82. see for example a) Liang H-X, Nocek JM, Huang K, Hayes RT, Kurnikov IV, Beratan DN, Hoffman B (2002) J Am Chem Soc 124:65849–6859. b) Keinan S, Nocek JM, Hoffman BJ, Beratan DN (2012) Phys Chem Chem Phys 14:13881–13889 c) Lin J, Balabin IA, Beratan DN (2005) Science 310-1311–1313.

  83. a) de la Lande A, Babcock N, Řezáč J, Sanders, B C, Salahub DR (2010) Proc Natl Acad Sci 107:11799–11804. b) El Hammi E, Houée-Lévin C, Řezáč J, Lévy B, Demachy I, Baciou L, de la Lande A (2012) Phys Chem Chem Phys 14:13872–13880

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julien Pilmé, Jacqueline Bergès or Aurélien de la Lande.

Additional information

This paper belongs to Topical Collection QUITEL 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilmé, J., Luppi, E., Bergès, J. et al. Topological analyses of time-dependent electronic structures: application to electron-transfers in methionine enkephalin. J Mol Model 20, 2368 (2014). https://doi.org/10.1007/s00894-014-2368-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2368-4

Keywords

Navigation