Skip to main content
Log in

Aromaticity of azines through dyotropic double hydrogen transfer reaction

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory calculations have been performed at B3LYP/6–31+G (d) level to quantify the aromaticities of mono- to triazines through dyotropic double hydrogen transfer (DDHT) reaction. The reaction was chosen such that the azines are products of double hydrogen dyotropic rearrangement, and activation barriers and energies of the reactions were functions of the aromaticities of azines. Small activation barriers and high energies of reactions were characteristic of the reactions delivering highly aromatic azines. Synchronicity, reaction energies and energies of activation have been analyzed, and the aromaticity values obtained thereof were compared with the aromaticity values from other geometric and magnetic criteria. Energies of activation were found superior to the energies of reaction for the determination of the aromaticities. Aromaticities of most of the azines were comparable to the aromaticity of benzene. Activation barriers and reaction energies for the dyotropic reactions delivering contiguous or polynitrogeneous azines had thermodynamic contributions arising from the contiguous nature of azines, in addition to the aromaticity related thermodynamic contributions. Moreover, the aromaticity values of azines are also affected by the fusion of azine to the reaction center. When corrected for these factors, the aromaticities of azines using energies of activation for DDHT correlated nicely with the aromaticities of azines reported in the literature through NICS (0) πzz and some other energetic methods.

Azines have aromaticities comparable to benzene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kekulé A (1865) Bull la Soc Chim Paris 3:98–110

    Google Scholar 

  2. Schleyer PR (2001) Chem Rev 101:1115–1118

    Article  CAS  Google Scholar 

  3. Binsch G, Heilbronner E (1968) Tetrahedron 24:1215–1223

    Article  CAS  Google Scholar 

  4. Labarre JF, Crasnier F (1971) Top Curr Chem 24:33

    Google Scholar 

  5. Binsch G (1973) Naturwissenschaften 60:369–374

    Article  CAS  Google Scholar 

  6. Balaban AT, Oniciu DC, Katritzky AR (2004) Chem Rev 104:2777

    Article  CAS  Google Scholar 

  7. Krygowski TM, Cyranski MK, Czarnocki Z et al (2000) Tetrahedron 56:1783–1796

    Article  CAS  Google Scholar 

  8. Minkin VI, Glukhovtsev MN, BY S (1994) Aromaticity and antiaromaticity: electronic and structural aspects.

  9. Schleyer PR, Maerker C, Dransfeld A et al (1996) J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  10. Schleyer PR, Jiao H, Goldfuss B, Freeman PK (2003) Angew Chem Int Ed 34:337–340

    Article  Google Scholar 

  11. Schaad LJ, Hess BA (2001) Chem Rev 101:1465–1476

    Article  CAS  Google Scholar 

  12. Katritzky AR, Jug K, Oniciu DC (2001) Chem Rev 101:1421–1450

    Article  CAS  Google Scholar 

  13. Dewar MJS, Gleicher GJ (1965) J Am Chem Soc 87:692–696

    Article  Google Scholar 

  14. Dewar MJS, De Llano C (1969) J Am Chem Soc 91:789–795

    Article  CAS  Google Scholar 

  15. Dewar MJS, Gleicher GJ (1965) J Am Chem Soc 87:685–692

    Article  CAS  Google Scholar 

  16. Dewar MJS, Gleicher GJ (1966) J Chem Phys 44:759

    Article  CAS  Google Scholar 

  17. Hess BA, Schaad LJ, Holyoke CW (1975) Tetrahedron 31:295–298

    Article  CAS  Google Scholar 

  18. Schaad LJ, Hess BA Jr (1974) J Chem Educ 51:640

    Article  CAS  Google Scholar 

  19. Randic M (1977) No title. J Am Chem Soc 99:444–450

    Article  CAS  Google Scholar 

  20. Hess BA, Schaad LJ (1973) No title. J Am Chem Soc 95:3907–3912

    Article  CAS  Google Scholar 

  21. Hess BA Jr, Schaad LJ (1971) No title. J Am Chem Soc 93:2413–2416

    Article  CAS  Google Scholar 

  22. Hess BA Jr, Schaad LJ (1971) No title. J Org Chem 36:3418–3423

    Article  CAS  Google Scholar 

  23. Schaad LJ, Hess BA Jr (1972) No title. J Am Chem Soc 94:3068–3074

    Article  CAS  Google Scholar 

  24. Hess BA Jr, Schaad LJ (1971) J Am Chem Soc 93:305–310

    Article  CAS  Google Scholar 

  25. Hess B, Schaad LJ, Holyoke CW (1972) Tetrahedron 28:3657–3667

    Article  CAS  Google Scholar 

  26. Schleyer PR, Pühlhofer F (2002) Org Lett 4:2873–2876

    Article  CAS  Google Scholar 

  27. Gutman I, Milun M, Trinajstić N (1975) Comm Math Comput Chem 1:171–175

    CAS  Google Scholar 

  28. Aihara J (1976) J Am Chem Soc 98:2750–2758

    Article  CAS  Google Scholar 

  29. Gutman I, Milun M, Trinajstic N (1977) J Am Chem Soc 99:1692–1704

    Article  CAS  Google Scholar 

  30. Frenking G, Cossío FP, Sierra MA, Fernández I (2007) Eur J Org Chem 5410–5415

  31. Fernández I, Cossío FP, Sierra MA (2009) Chem Rev 109:6687–711

    Article  Google Scholar 

  32. Fernández I, Frenking G (2007) Faraday Discuss 135:403

    Article  Google Scholar 

  33. Kiener A (2003) Angew Chem Int Ed 31:774–775

    Article  Google Scholar 

  34. Counotte‐Potman A, Van Der Plas HC (1981) J Heterocycl Chem 18:123–127

    Article  Google Scholar 

  35. Eicher T (1998) J Prakt Chem 340:487–488

    Article  CAS  Google Scholar 

  36. Wiberg KB, Nakaji D, Breneman CM (1989) J Am Chem Soc 111:4178–4190

    Article  CAS  Google Scholar 

  37. Bird CW (1996) Tetrahedron 52:9945–9952

    Article  CAS  Google Scholar 

  38. Bird CW (1997) Tetrahedron 53:13111–13118

    Article  CAS  Google Scholar 

  39. Bird CW (1992) Tetrahedron 48:335–340

    Article  CAS  Google Scholar 

  40. Mandado M, Otero N, Mosquera RA (2006) Tetrahedron 62:12204–12210

    Article  CAS  Google Scholar 

  41. Mandado M, González‐Moa MJ, Mosquera RA (2007) J Comput Chem 28:127–136

    Article  CAS  Google Scholar 

  42. Solà M, Feixas F, Jiménez-Halla JOC et al (2010) Symmetry (Basel) 2:1156–1179

    Article  Google Scholar 

  43. Feixas F, Matito E, Poater J, Solà M (2008) J Comput Chem 29:1543–1554

    Article  CAS  Google Scholar 

  44. Raczyńska ED, Hallman M, Kolczyńska K, Stępniewski TM (2010) Symmetry (Basel) 2:1485–1509

    Article  Google Scholar 

  45. Wang Y, Wu JIC, Li Q, Schleyer PR (2010) Org Lett 12:1320–1323

    Article  CAS  Google Scholar 

  46. Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C et al (2006) Org Lett 8:863–866

    Article  CAS  Google Scholar 

  47. Frisch MJ, Trucks GW, Schlegel HB, et al. (2009) Gaussian 09 Revision C. 01, Gaussian Inc. Wallingford CT

  48. Specowius V, Bendrath F, Winterberg M et al (2012) Adv Synth Catal 354:1163–1169

    Article  CAS  Google Scholar 

  49. Iaroshenko VO, Ostrovskyi D, Ayub K et al (2013) Adv Synth Catal 355:576–588

    CAS  Google Scholar 

  50. Salman GA, Nisa RU, Iaroshenko VO et al (2012) Org Biomol Chem 10:9464–9473

    Article  Google Scholar 

  51. Ullah H, Shah A-HA, Ayub K, Bilal S (2013) J Phys Chem C 117:4069–4078

    Article  CAS  Google Scholar 

  52. Javed I, Khurshid A, Arshad MN, Wang Y (2014) New J Chem 38:752–761

    Article  CAS  Google Scholar 

  53. Lecea B, Arrieta A, Lopez X et al (1995) J Am Chem Soc 117:12314–12321

    Article  CAS  Google Scholar 

  54. Mitchell RH (2001) Chem Rev 101:1301–1315

    Article  CAS  Google Scholar 

  55. Herradon B, Alonso M (2010) J Comput Chem 31:917–928

    Google Scholar 

Download references

Acknowledgments

K.A. acknowledges the Higher Education Commission (HEC) of Pakistan (Grant No.20-1899/R & D/10/8863-), COMSATS Institute of Information Technology and King Faisal University for financial support to the project. R.L acknowledges the support to this work by the project “Light2Hydrogen” of the BMBF and the project “Nano4Hydrogen” of the ESF and the state of Mecklenburg-Vorpommern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurshid Ayub.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maria, Hanif, M., Mahmood, T. et al. Aromaticity of azines through dyotropic double hydrogen transfer reaction. J Mol Model 20, 2304 (2014). https://doi.org/10.1007/s00894-014-2304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2304-7

Keywords

Navigation