Skip to main content
Log in

Regioselectivity of 1,3-dipolar cycloadditions between aryl azides and an electron-deficient alkyne through DFT reactivity descriptors

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Conceptual density functional theory, including chemical hardness, electronic chemical potential, global and local electrophilicity index and Fukui functions, is used to predict reactivity and regioselectivity of 1,3-dipolar cycloadditions (13DCs) between five aryl azides (1–5) and an electron-deficient alkyne at the B3LYP/6-31G(d,p) level. Two reaction paths (a) and (b) are considered which result in the corresponding regioisomeric 1,2,3-triazoles P(1-5)a and P(1-5)b, respectively. All the 13DCs proceed via rather asynchronous TSs and the path (b) is clearly more synchronous than the path (a). All the reactions are high exoergic [∆Gº = −45.1 to −51.4 kcal/mol for path (a) and −47.7 to −55.9 kcal/mol for path (b)] with the moderate and nearly similar activation barriers (E a  = 15.4–16.7 kcal/mol) referring a relatively low regioselectivity. All reactivity descriptors but one clearly suggest that path (a) is somewhat preferred over path (b). FMO interactions occur between HOMO13DP and LUMODPh due to the corresponding lower energy gap. All the reactions considered in this work classified as polar 13DCs with NED character. Our theoretical results are in good agreement with those reported experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Padwa, W.H. Pearson (eds.), Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products (Wiley, Hoboken, 2003)

    Google Scholar 

  2. M. Regitz, Phosphaalkynes: new building blocks in synthetic chemistry. Chem. Rev. 90, 191–213 (1990)

    Article  CAS  Google Scholar 

  3. M.T. Nguyen, An analysis of reactant approach in concerted 1, 3-dipolar cycloadditions by the second moment of localized orbitals. J. Mol. Struct. (THEOCHEM) 105, 343–349 (1983)

    Article  Google Scholar 

  4. L. Nyulaszi, P. Varnai, W. Eisfeld, M. Regitz, Regioselectivity in cycloaddition reaction between phosphaacetylene and diazomethane: an ab initio study. J. Comput. Chem. 18, 609–616 (1997)

    Article  CAS  Google Scholar 

  5. R. Huisgen, 1, 3-dipolar cycloadditions: past and future. Angew. Chem. Int. Ed. 2, 565–632 (1963)

    Article  Google Scholar 

  6. R.A. Firestone, Orientation in 1,3-dipolar cycloadditions according to the diradical mechanism: partial formal charges in the linnet structures of the diradical intermediates. J. Org. Chem. 37, 2181–2191 (1972)

    Article  CAS  Google Scholar 

  7. S.A. Siadati, An example of a stepwise mechanism for the catalyst-free 1, 3-dipolar cycloaddition between a nitrile oxide and an electron rich alkene. Tetrahedron Lett. 56, 4857–4863 (2015)

    Article  CAS  Google Scholar 

  8. P. Griess, Ueber diazocyanbenzol. Ber. Dtsch. Chem. Ges. 2, 369–370 (1869)

    Article  Google Scholar 

  9. E.F.V. Scriven, K. Turnbull, Azides: their preparation and synthetic uses. Chem. Rev. 88, 297–368 (1988)

    Article  CAS  Google Scholar 

  10. W.H. Pearson, P. S. Ramamoorthy in Encyclopedia of Reagents for Organic Synthesis, ed. by L. Paquette L. (Wiley, New York, 2004)

  11. B. Souad, C.E. Fatmi, T. Mabrouk, Synthesis of some 1,4,5-trisubstituted 1,2,3-triazoles by 1,3-dipolarcycloaddition of 2-substituted phenyl azides to dimethyl acetylene dicarboxylate (DMAD), regular versus microwave irradiation: a comparative study. Rasayan. J. Chem. 4, 806–809 (2011)

    CAS  Google Scholar 

  12. K.N. Houk, J. Sims, C.R. Watts, L.J. Luskus, Origin of reactivity, regioselectivity, and periselectivity in 1, 3-dipolar cycloadditions. J. Am. Chem. Soc. 95, 7301–7315 (1973)

    Article  CAS  Google Scholar 

  13. J. Geittner, R. Huisgen, R. Sustmann, Kinetics of 1, 3-dipolar cycloaddition reactions of diazomethane; a correlation with homo-lumo energies. Tetrahedron Lett. 18, 881–884 (1977)

    Article  Google Scholar 

  14. D.G. Williamson, R.J. Cvetanovic, Rates of ozone-olefin reactions in carbon tetrachloride solutions. J. Am. Chem. Soc. 90, 3668–3672 (1968)

    Article  CAS  Google Scholar 

  15. R. Huisgen, G. Szeimies, L. Mobius, 1.3-Dipolare cycloadditionen, XXXII. Kinetik der additionen organischer azide an CC-Mehrfachbindungen. Chem. Ber. 100, 2494–2507 (1967)

    Article  CAS  Google Scholar 

  16. T.M.V.D. Pinho e Melo, Recent advances on the synthesis and reactivity of isoxazoles. Curr. Org. Chem. 9, 925–958 (2005)

    Article  CAS  Google Scholar 

  17. K.N. Houk, Frontier molecular orbital theory of cycloaddition reactions. Acc. Chem. Res. 8, 361–369 (1975)

    Article  CAS  Google Scholar 

  18. J. Barluenga, C. Valdes, G. Beltran, M. Escribano, F. Aznar, Developments in Pd catalysis: synthesis of 1H1,2,3-triazoles from sodium azide and alkenyl bromides. Angew. Chem. Int. Ed. 45, 6893–6896 (2006)

    Article  CAS  Google Scholar 

  19. F. Himo, T. Lovell, R. Hilgraf, V.V. Rostovtsev, L. Noodleman, K.B. Sharpless, V.V. Fokin, Copper (I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc. 127, 210–216 (2005)

    Article  CAS  Google Scholar 

  20. R.A. Firestone, Orientation in the 1, 3-dipolar cycloaddition of diazomethane and ethyl vinyl ether. J. Org. Chem. 41, 2212–2214 (1976)

    Article  CAS  Google Scholar 

  21. L.R. Domingo, A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv 4, 32415–32428 (2014)

    Article  CAS  Google Scholar 

  22. J. Wei, J. Chen, J. Xu, L. Cao, H. Deng, W. Sheng, H. Zhang, W. Cao, Scope and regioselectivity of the 1,3-dipolar cycloaddition of azides with methyl 2-perfluoroalkynoates for an easy, metal-free route to perfluoroalkylated 1,2,3-triazoles. J. Fluor. Chem. 133, 146–154 (2012)

    Article  CAS  Google Scholar 

  23. M.J. Frisch et al., Gaussian 03, Revision B.03 (Gaussian, Pittsburgh, 2003), p. 9

  24. A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  25. C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  26. R. Ditchfield, W.J. Hehre, J.A. Pople, Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971)

    Article  CAS  Google Scholar 

  27. E. Paredes, R. Brasca, M. Kneeteman, P.M.E. Mancini, A novel application of the Diels–Alder reaction: nitronaphthalenes as normal electron demand dienophiles. Tetrahedron 63, 3790–3799 (2007)

    Article  CAS  Google Scholar 

  28. C.N. Alves, A.S. Carneiro, J. Andres, L.R. Domingo, A DFT study of the Diels-Alder reaction between methyl acrolein derivatives and cyclopentadiene. Understanding the effects of Lewis acids catalysts based on sulfur containing boron heterocycles. Tetrahedron 62, 5502–5509 (2006)

    Article  CAS  Google Scholar 

  29. L.R. Domingo, A density functional theory study for the Diels–Alder reaction between N-acyl-1-aza-1, 3-butadienes and vinylamines. Lewis acid catalyst and solvent effects. Tetrahedron 58, 3765–3774 (2002)

    Article  CAS  Google Scholar 

  30. C. Della Rosa, C. Ormachea, M.N. Kneeteman, C. Adam, P.M.E. Mancini, Diels-Alder reactions of N-tosylpirroles developed in protic ionic liquids. Theoretical studies using DFT methods. Tetrahedron Lett. 52, 6754–6757 (2011)

    Article  CAS  Google Scholar 

  31. P.M.E. Mancini, C.M. Ormachea, C.D. Della Rosa, M.N. Kneeteman, A.G. Suarez, L.R. Domingo, Ionic liquids and microwave irradiation as synergistic combination for polar Diels-Alder reactions using properly substituted heterocycles as dienophiles. A DFT study related. Tetrahedron Lett. 53, 6508–6511 (2012)

    Article  CAS  Google Scholar 

  32. S. Bouacha, A.K. Nacereddine, A. Djerourou, A theoretical study of the mechanism, stereoselectivity and Lewis acid catalyst on the Diels–Alder cycloaddition between furan and activated alkenes. Tetrahedron Lett. 54, 4030–4033 (2013)

    Article  CAS  Google Scholar 

  33. H.B. Schlegel, Optimization of equilibrium geometries and transition structures. J. Comput. Chem. 3, 214218 (1982)

    Article  Google Scholar 

  34. A.E. Reed, F. Weinhold, Natural bond orbital analysis of near-Hartree–Fock water dimer. J. Phys. Chem. 78, 4066–4073 (1983)

    Article  CAS  Google Scholar 

  35. W. Kohn, A.D. Becke, R.G. Parr, Density functional theory of electronic structure. J. Phys. Chem. 100, 12974–12980 (1996)

    Article  CAS  Google Scholar 

  36. P.K. Chattaraj, U. Sarker, D. Ranjan Roy, Electrophilicity index. Chem. Rev. 106, 2065–2091 (2006)

    Article  CAS  Google Scholar 

  37. L.R. Domingo, E. Chamorro, P. Perez, Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J. Org. Chem. 73, 4615–4624 (2008)

    Article  CAS  Google Scholar 

  38. P. Geerlings, F. De Proft, W. Langenaeker, Conceptual density functional theory. Chem. Rev. 103, 1793–1874 (2003)

    Article  CAS  Google Scholar 

  39. R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, Electronegativity: the density functional viewpoint. J. Chem. Phys. 68, 3801–3807 (1978)

    Article  CAS  Google Scholar 

  40. B. Gmez, P.K. Chattaraj, E. Chamorro, R. Contreras, P. Fuentealba, A density functional study of the claisen rearrangement of allyl aryl ether, allyl arylamine, allyl aryl thio ether, and a series of meta-substituted molecules through reactivity and selectivity profiles. J. Phys. Chem. A 106, 11227–11233 (2002)

    Article  Google Scholar 

  41. R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516 (1983)

    Article  CAS  Google Scholar 

  42. T.A. Koopmans, Uber die zuordnung von wellenfunk tionen und eigenwerten zu den einzelenen electronen eines atoms. Physica 1, 104–113 (1934)

    Article  Google Scholar 

  43. R.G. Pearson, Chemical hardness: applications from molecules to solids (Wiley-VCH Verlag GMBH, Weinheim, 1997)

    Book  Google Scholar 

  44. P.K. Chattaraj, S. Sengupta, Popular electronic structure principles in a dynamical context. J. Phys. Chem. 100, 16126–16130 (1996)

    Article  CAS  Google Scholar 

  45. R.G. Parr, L.V. Szentpaly, S. Liu, Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999)

    Article  CAS  Google Scholar 

  46. L.R. Domingo, P. Perez, The nucleophilicity N index in organic chemistry. Org. Biomol. Chem. 9, 7168–7175 (2011)

    Article  CAS  Google Scholar 

  47. S. Noorizadeh, H. Maihami, A theoretical study on the regioselectivity of Diels–Alder reactions using electrophilicity index. J. Mol. Struct. (THEOCHEM) 763, 133–144 (2006)

    Article  CAS  Google Scholar 

  48. L.R. Domingo, S.R. Emamian, Understanding the mechanisms of [32] cycloaddition reactions. The pseudoradical versus the zwitterionic mechanism. Tetrahedron 70, 1267–1273 (2014)

    Article  CAS  Google Scholar 

  49. L.R. Domingo, M.J. Aurell, P. Perez, A DFT analysis of the participation of zwitterionic TACs in polar [32] cycloaddition reactions. Tetrahedron 70, 1–7 (2014)

    Article  Google Scholar 

  50. L.R. Domingo, M.J. Aurell, P. Perez, A mechanistic study of the participation of azomethine ylides and carbonyl ylides in [32] cycloaddition reactions. Tetrahedron 71, 1050–1057 (2015)

    Article  CAS  Google Scholar 

  51. F. Mendez, J.L. Gazquez, Chemical reactivity of enolate ions: the local hard and soft acids and bases principle viewpoint. J. Am. Chem. Soc. 116, 9298–9301 (1994)

    Article  CAS  Google Scholar 

  52. J.L. Gazquez, A. Martinez, F. Mendez, Relationship between energy and hardness differences. J. Phys. Chem. 97, 4059–4063 (1993)

    Article  CAS  Google Scholar 

  53. A. Nouri, E. Zahedi, F.J. Jafari, A. Nouri, Diels–Alder reactions of α-cyano α, β-unsaturated ketones with 2-methyl-1, 3-butadiene: DFT study of mechanism, reactivity and regioselectivity. Prog. React. Kinet. Mech. 40, 177–189 (2015)

    CAS  Google Scholar 

  54. A.K. Chandra, M.T. Nguyen, Density functional approach to regiochemistry, activation energy, and hardness profile in 1, 3-dipolar cycloadditions. J. Phys. Chem. A 102, 6181–6185 (1998)

    Article  CAS  Google Scholar 

  55. A.K. Chandra, M.T. Nguyen, Use of local softness for the interpretation of reaction mechanisms. Int. J. Mol. Sci. 3, 310–323 (2002)

    Article  CAS  Google Scholar 

  56. W. Yang, W.J. Mortier, The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J. Am. Chem. Soc. 108, 5708–5711 (1986)

    Article  CAS  Google Scholar 

  57. H. Chemouri, S.M. Mekelleche, Elucidation of the substitutent effects on the reaction pathway of the cycloaddition of 1, 3-diazabuta-1, 3-dienes with ketenes using DFT-based reactivity indexes. J. Mol. Struct. (THEOCHEM) 813, 67–72 (2007)

    Article  CAS  Google Scholar 

  58. L.R. Domingo, P. Perez, J.A. Saez, Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv. 3, 1486–1494 (2013)

    Article  CAS  Google Scholar 

  59. S.A. Blair, A.J. Thakkar, How often is the minimum polarizability principle violated? Chem. Phys. Lett. 556, 346–349 (2013)

    Article  CAS  Google Scholar 

  60. M. Torrent-Sucarrat, J.M. Luis, M. Duran, M. Sola, Are the maximum hardness and minimum polarizability principles always obeyed in nontotally symmetric vibrations? J. Chem. Phys. 117, 10561–10570 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge The Research Council of the Islamic Azad University Shahr-e-Qods Branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azita Nouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dizaji, N.J., Nouri, A., Zahedi, E. et al. Regioselectivity of 1,3-dipolar cycloadditions between aryl azides and an electron-deficient alkyne through DFT reactivity descriptors. Res Chem Intermed 43, 767–782 (2017). https://doi.org/10.1007/s11164-016-2663-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2663-z

Keywords

Navigation