Advertisement

Understanding the high reactivity of triazolinediones in Diels-Alder reactions. A DFT study

  • María A. Fernández-HerreraEmail author
  • Claudia Zavala-Oseguera
  • José Luis Cabellos
  • Jesús Sandoval-Ramírez
  • Luis R. DomingoEmail author
  • Gabriel MerinoEmail author
Original Paper

Abstract

The participation of 4-substituted-1,2,4-triazoline-3,5-diones (TADs) in Diels-Alder reactions toward a series of dienes is studied at the M05-2X/6-31+G(d,p) level. These reactions show very low activation energies and complete endo selectivity, in agreement with the experimental data. For a dienic steroid model, the reaction presents an α-facial selectivity. Analysis of reactivity indices explains the superelectrophilic character of TADs, and low activation energy. The substituent and solvent effects are also evaluated.

Figure

The Diels-Alder reactions between 4-substituted-1,2,4-triazoline-3,5-diones (TADs) and a series of dienes are studied by DFT computations at the M05-2X/6-31+G(d,p) level. Our computations support a series of features listed as follows: 1) low activation energies, 2) complete endo selectivity, 3) the superelectrophilic character of TADs, 4) the high electrophilicity index of TADs, and 5) the high asynchronycity found in the reaction performed with a steroidal model. Substituent and solvent effects are also analyzed

Keywords

DFT study Polar Diels-Alder reaction Steroidal diene TADs 

Notes

Acknowledgments

The authors gratefully thank Conacyt (Grants 176863, 176858, and INFRA-2013-01-204586) and VIEP-BUAP (Grants VIEP-247-2013 and VIEP-098-2014). Moshinsky Foundation supported the work in Mérida. The CGSTIC (Xiuhcoalt) at Cinvestav is gratefully acknowledged for generous allocation of computational resources. LRD thanks Universidad de Valencia (Grant UV-INV-AE13-139082). CZ acknowledges Conacyt for the PhD fellowship.

References

  1. 1.
    Mallakpour SE, Butler GB (1989) Modification of polymers via electrophilic aromatic-substitution. J Polym Sci A Polym Chem 27:125–138CrossRefGoogle Scholar
  2. 2.
    Mallakpour SE, Butler GB (1989) Uncatalyzed polymerization of bistriazolinediones with electron-rich aromatic-compounds via electrophilic aromatic-substitution. J Polym Sci A Polym Chem 27:217–235CrossRefGoogle Scholar
  3. 3.
    Klindert T, Seitz G (1996) 4-Phenyl-1,2,4-triazoline-3,5-dione: a novel dehydrogenating agent for dihydropyridazines. Synth Commun 26:2587–2596CrossRefGoogle Scholar
  4. 4.
    Cookson RC, Gupte SS, Stevens IDR, Watts CT (1988) 4-Phenyl-1,2,4-triazoline-3,5-dione. Org Synth Coll 6:936–940Google Scholar
  5. 5.
    Borhani DW, Greene FD (1986) Triazolinediones—conversion to deaza dimers by electron-transfer catalysis—a possible radical-anion diels-alder reaction. J Org Chem 51:1563–1570CrossRefGoogle Scholar
  6. 6.
    Christoforou A, Nicolaou G, Elemes Y (2006) N-phenyltriazolinedione as an efficient, selective, and reusable reagent for the oxidation of thiols to disulfides. Tetrahedron Lett 47:9211–9213CrossRefGoogle Scholar
  7. 7.
    Bazgir A, Seyyedhamzeh M, Yasaei Z, Mirzaei P (2007) A novel three-component method for the synthesis of triazolo 1,2-a indazole-triones. Tetrahedron Lett 48:8790–8794CrossRefGoogle Scholar
  8. 8.
    Cases M, Duran M, Mestres J, Martin N, Sola M (2001) Mechanism of the addition reaction of alkyl azides to 60 fullerene and the subsequent N-2 extrusion to form monoimino- 60 fullerenes. J Org Chem 66:433–442CrossRefGoogle Scholar
  9. 9.
    Elemes Y, Foote CS (1992) Stepwise mechanisms in the ene reaction of alpha, beta-unsaturated esters with N-phenyl-1,2,4-triazoline-3,5-dione and singlet oxygen—intermolecular primary and secondary hydrogen isotope effects. J Am Chem Soc 114:6044–6050CrossRefGoogle Scholar
  10. 10.
    Garner P, Ho WB, Grandhee SK, Youngs WJ, Kennedy VO (1991) Development of an asymmetric approach to the 3,8-diazabicyclo 3.2.1 octane moiety of quinocarcin via intermolecular 1,3-dipolar cycloadditions of photochemically generated azomethine ylides. J Org Chem 56:5893–5903CrossRefGoogle Scholar
  11. 11.
    Jensen F, Foote CS (1987) Reaction of 4-phenyl-1,2,4-triazoline-3,5-dione with substituted butadienes—a nonconcerted Diels-Alder reaction. J Am Chem Soc 109:6376–6385CrossRefGoogle Scholar
  12. 12.
    Lai YC, Mallakpour SE, Butler GB, Palenik GJ (1985) Diels-Alder and ene reactions of 4-substituted 1,2,4-triazoline-3,5-diones and some substituted styrenes. J Org Chem 50:4378–4381CrossRefGoogle Scholar
  13. 13.
    Anastassiou AG, Yakali E (1972) Generation and thermal bond relocation of cyclononatetraenyl cation. J Chem Soc Chem Commun 2:92CrossRefGoogle Scholar
  14. 14.
    Kobal VM, Gibson DT, Davis RE, Garza DA (1973) X-ray determination of absolute stereochemistry of initial oxidation-product formed from toluene by pseudomonas-pptida 39/D. J Am Chem Soc 95:4420–4421CrossRefGoogle Scholar
  15. 15.
    Poutsma ML, Ibarbia PA (1971) Electrophilic additions to 2-methyl-1-(tetramethylcyclopropyliden)propene—generation of cyclopropylidenecarbinyl cations. J Am Chem Soc 93:440CrossRefGoogle Scholar
  16. 16.
    Barton DHR, Gunatilaka AAL, Nakanishi T, Patin H, Widdowson DA, Worth BR (1976) Synthetic uses of steroidal ring B diene protection - 22,23-dihydroergosterol. J Chem Soc Perkin Trans 1(8):821–826CrossRefGoogle Scholar
  17. 17.
    Fernandez-Herrera MA, Sandoval-Ramirez J, Montiel-Smith S, Meza-Reyes S (2013) A convenient methodology for the in situ oxidation of 4-substituted urazoles. Setting up a one-pot procedure for the efficient protection of dienes. Heterocycles 87:571–582CrossRefGoogle Scholar
  18. 18.
    Domingo LR, Sáez JA (2009) Understanding the mechanism of polar Diels-Alder reactions. Org Biomol Chem 7:3576–3583CrossRefGoogle Scholar
  19. 19.
    Parr RG, Von Szentpaly L, Liu SB (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  20. 20.
    Domingo LR, Chamorro E, Perez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J Org Chem 73:4615–4624CrossRefGoogle Scholar
  21. 21.
    Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382CrossRefGoogle Scholar
  22. 22.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Wallingford, CTGoogle Scholar
  23. 23.
    Fukui K (1981) The path of chemical-reactions—the IRC approach. Acc Chem Res 14:363–368CrossRefGoogle Scholar
  24. 24.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396CrossRefGoogle Scholar
  25. 25.
    Parr RG, Pearson RG (1983) Absolute hardness—companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  26. 26.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  27. 27.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133–1138CrossRefGoogle Scholar
  28. 28.
    Chen JS, Houk KN, Foote CS (1998) Theoretical study of the concerted and stepwise mechanisms of triazolinedione Diels-Alder reactions. J Am Chem Soc 120:12303–12309CrossRefGoogle Scholar
  29. 29.
    Sauer J, Schroder B (1965) Reactivity of dienophiles and ability to form charge-transfer complexes. Angew Chem Int Ed 4:711Google Scholar
  30. 30.
    Sauer J (1967) Diels-Alder reactions 2—reaction mechanism. Angew Chem Int Ed 6:16CrossRefGoogle Scholar
  31. 31.
    Domingo LR, Aurell MJ, Perez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions. Tetrahedron 58:4417–4423CrossRefGoogle Scholar
  32. 32.
    Jaramillo P, Domingo LR, Chamorro E, Perez P (2008) A further exploration of a nucleophilicity index based on the gas-phaseionization potentials. J Mol Struct THEOCHEM 865:68–72CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Departamento de Física AplicadaCentro de Investigación y de Estudios AvanzadosMéridaMexico
  3. 3.Departamento de Química OrgánicaUniversidad de ValenciaBurjassotSpain

Personalised recommendations