Skip to main content
Log in

Host-guest complexes of calix[4]tubes - prediction of ion selectivity by quantum chemical calculations VI

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The selectivity of the bis(calix[4]arene)tetraethylene abbreviated as calix[4]tube for the endohedral complexation of alkali and alkaline earth metal ions, was predicted on the basis of structures and complex formation energies computed with three different quantum chemical methods: DFT LANL2DZp)/LANL2DZp), PM3/SPASS, and PM6. A comparison with published X-ray structures demonstrated that the most reliable results were achieved applying DFT calculations. The complexation of K+ and Ba2+ is most favorable, followed by the encapsulation of Rb+ and Sr2+, respectively. The flexibility of the tube, described by the torsion angles associated with the ethylene linkages between the calix[4]arene units and phenyl rings intersecting the plane of the four methylene carbon atoms, also makes an important contribution to its selectivity. In general, the cavity size is similar to [2.2.2] and [N2N2N2], the cryptands with the largest cavities previously studied in our group applying a similar protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gutsche CD (2008) Calixarenes: an Introduction, 2nd edn. Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Mandolini L, Ungaro R (2000) Calixarenes in Action. Imperial College Press, London

    Book  Google Scholar 

  3. Sliwa W, Kozlowski C (2009) Calixarenes and Resorcinarenes. Wiley-VCH, Weinheim

    Google Scholar 

  4. Baeyer A (1872) Ueber die Verbindungen der Aldehyde mit den Phenolen. Ber Dtsch Chem Ges 5:280–282

    Article  Google Scholar 

  5. Baeyer A (1872) Ueber die Verbindungen der Aldehyde mit den Phenolen und aromatischen Kohlenwasserstoffen. Ber Dtsch Chem Ges 5:1094–1100

    Article  Google Scholar 

  6. Zinke A, Ziegler E (1944) Zur Kenntnis des Härtungsprozesses von Phenol-Formaldehyd-Harzen, X. Mitteilung. Ber Dtsch Chem Ges 77:264–272

    Article  Google Scholar 

  7. Gutsche CD, Muthukrishnan R (1978) Calixarenes. 1. Analysis of the product mixtures produced by the base-catalyzed condensation of formaldehyde with para-substituted phenols. J Org Chem 43:4905–4906

    Article  CAS  Google Scholar 

  8. Steed W (2013) First glimpse at a calixarene clathrate. Chem Commun 49:114–117

    Article  CAS  Google Scholar 

  9. Pedersen CJ (1988) Die Entdeckung der Kronenether (Nobel-Vortrag). Angew Chem 100:1053–1059

    Article  CAS  Google Scholar 

  10. Pedersen CJ (1988) The Discovery of Crown Ethers (Noble Lecture). Angew Chem Int Ed Engl 27:1021–1027

    Article  Google Scholar 

  11. Cram DJ (1988) Von molekularen Wirten und Gästen sowie ihren Komplexen (Nobel-Vortrag). Angew Chem 100:1041–1052

    Article  CAS  Google Scholar 

  12. Cram DJ (1988) The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture). Angew Chem Int Ed Engl 27:1009–1020

    Article  Google Scholar 

  13. Lehn J-M (1988) Supramolekulare Chemie – Moleküle, Übermoleküle und molekulare Funktionseinheiten (Nobel-Vortrag). Angew Chem 100:91–116

    Article  CAS  Google Scholar 

  14. Lehn J-M (1988) Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angew Chem Int Ed Engl 27:89–112

    Article  Google Scholar 

  15. Ellermann J, Bauer W, Schütz M, Heinemann FW, Moll M (1998) Chemistry of polyfunctional molecules. Part 130. Rubidium and cesium bis(diphenylphosphinyl)amide. Syntheses, 18-crown-6 complexes, cleavage products, crystal structures, and solid-state NMR spectra. Monatsh Chem Chem Mon 129:547–566

    CAS  Google Scholar 

  16. Hausner SH, Striley CAF, Krause-Bauer JA, Zimmer H (2005) Dibenzotetraaza crown ethers: a new family of crown ethers based on o-phenylenediamine. J Org Chem 70:5804–5817

    Article  CAS  Google Scholar 

  17. Power NP, Dalgarno SJ, Atwood JL (2007) Robust and stable pyrogallol[4]arene molecular capsules facilitated via an octanuclear zinc coordination belt. New J Chem 31:17–20

    Article  CAS  Google Scholar 

  18. Fifere A, Marangoci N, Maier S, Coroaba A, Maftei D, Pinteala M (2012) Theoretical study on β-cyclodextrin inclusion complexes with propiconazole and protonated propiconazole. Beilstein J Org Chem 8:2191–2201

    Article  CAS  Google Scholar 

  19. Lehn J-M (1978) Cryptates: the chemistry of macropolycyclic inclusion complexes. Acc Chem Res 11:49–57

    Article  CAS  Google Scholar 

  20. Dietrich B, Viout P, Lehn J-M (1993) Macrocyclic Chemistry: Aspects of Organic and Inorganic Supra Molecular Chemistry. VCH, Weinheim

    Google Scholar 

  21. Simoes JB, da Silva DL, de Fatima A, Fernandes SA (2012) Calix[n]arenes in action: useful host-guest catalysis in organic chemistry. Curr Org Chem 16:949–971

    Article  CAS  Google Scholar 

  22. Luis SV, Alfonso I, Galindo F (2012) Receptors for Zwitterionic Species. Supramol Chem Mol Nanomater 3:1259–1280

    CAS  Google Scholar 

  23. Schultz-Sikma EA, Meade TJ (2012) Supramolecular Chemistry in Biological Imaging In Vivo. Supramolecular Chemistry: From Molecules to Nanomaterials, Gale PA and Steed JW Eds. John Wiley & Sons, Ltd. 1851–1876

  24. Oshima T, Baba Y (2012) Recognition of exterior protein surfaces using artificial ligands based on calixarenes, crown ethers, and tetraphenylporphyrins. J Incl Phenom Macrocycl Chem 73:17–32

    Article  CAS  Google Scholar 

  25. Mokhtari B, Pourabdollah K (2012) Applications of calixarene nano-baskets in pharmacology. J Incl Phenom Macrocycl Chem 73:1–15

    Article  CAS  Google Scholar 

  26. Sharma K, Cragg PJ (2011) Calixarene based chemical sensors. Chem Sensors 1:9/1–9/18

    CAS  Google Scholar 

  27. Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41:3210–3244

    Article  CAS  Google Scholar 

  28. Schrader T (2012) Protein recognition. Calixarene connection. Nat Chem 4:519–520

    Article  CAS  Google Scholar 

  29. Andreetti GD, Ungaro R, Pochini A (1979) Crystal and molecular structure of cyclo{quater[(5-tert-butyl-2-hydroxy-1,3-phenylene)methylene]} toluene (1:1) clathrate. J Chem Soc Chem Commun 22:1005–1007

    Article  Google Scholar 

  30. Izatt SR, Hawkins RT, Christensen JJ, Izatt RM (1985) Cation transport from multiple alkali cation mixtures using a liquid membrane system containing a series of calixarene carriers. J Am Chem Soc 107:63–66

    Article  CAS  Google Scholar 

  31. Böhmer V, McKervey MA (1991) Calixarenes. New possibilities in supramolecular chemistry. Chem Unserer Zeit 25:195–207

    Article  Google Scholar 

  32. Diaz MT, Smyth MR, Diamond D, Seward EM, Svehla G, McKervey MA, Campbell AT, Howard AG, Forster RC, Howard AG (1989) Analysis of sodium in blood plasma using a new mini ion-selective electrode. Anal Proc 26:29–36

    Article  Google Scholar 

  33. Ramakrishna V, Patra S, Suresh E, Bhatt AK, Bhatt PA, Hussain A, Paul P (2012) Synthesis, crystal structures and competitive binding property of a family of functionalized calix[4]arene ionophores. Inorg Chem Commun 22:85–89

    Article  CAS  Google Scholar 

  34. Sahin O, Yilmaz M (2012) Synthesis and fluorescence sensing properties of a new naphthalimide derivative of calix[4]arene. Tetrahedron Lett 53:2319–2324

    Article  CAS  Google Scholar 

  35. Bingol H, Kaykal F, Akgemci EG, Sirit A (2010) Facilitated transfer of alkali and alkaline-earth metal ions by a calix[4]arene derivative across water/1,2-dichloroethane microinterface: amperometric detection of Ca2+. Electroanalysis 22:2825–2833

    Article  CAS  Google Scholar 

  36. Talanova GG, Talanov VS, Surowiec K, Bartsch RA (2010) Effect of Na+ on solvent extraction of alkaline earth metal cations by proton-ionizable calix[4]arenes. ARKIVOC 7:160–169

    Article  Google Scholar 

  37. Matthews SE, Schmitt P, Felix V, Drew MGB, Beer PD (2002) Calix[4]tubes: a new class of potassium-selective ionophore. J Am Chem Soc 124:1341–1353

    Article  CAS  Google Scholar 

  38. Budka J, Lhotak P, Stibor I, Michlova V, Sykorba J, Cisarova I (2002) A biscalix[4]arene-based ditopic hard/soft receptor for K+/Ag+ complexation. Tetrahedron Lett 43:2857–2861

    Article  CAS  Google Scholar 

  39. Makha M, Nichols PJ, Hardie MJ, Raston CL (2002) Unsymmetrical O-bridged calixarenes derived from tBu-calix[4]arene and p-benzylcalix[4]arene. J Chem Soc Perkin Trans 1(3):354–359

    Article  Google Scholar 

  40. Notti A, Occhipinti S, Pappalardo S, Parisi MF, Pisagatti I, White AJP, Williams DJ (2002) Calix[4]- and Calix[5]arene-Based Multicavity Macrocycles. J Org Chem 67:7569–7572

    Article  CAS  Google Scholar 

  41. Schmitt P, Beer PD, Drew MGB, Sheen PD (1997) Calix[4]tube: a tubular receptor with remarkable potassium ion selectivity. Angew Chem Int Ed Engl 36:1840–1842

    Article  CAS  Google Scholar 

  42. Haber F (1927) Gold in sea water. Angew Chem 40:303–314

    Article  CAS  Google Scholar 

  43. Bayer E, Fiedler H, Hock KL, Otterbach D, Schenk G, Voelter W (1964) Structure and specificity of organic complex formers. Angew Chem 76:76–83

    Article  CAS  Google Scholar 

  44. Bayer E, Fiedler H, Hock KL, Otterbach D, Schenk G, Voelter W (1964) Structure and specificity of organic chelating agents. Angew Chem Int Ed Engl 3:325

    Article  Google Scholar 

  45. Lehn JM (1995) Supramolecular Chemistry. Weinheim, VCH

    Book  Google Scholar 

  46. Vögtle F (1992) Supramolekulare Chemie. Teubner, Stuttgart

    Book  Google Scholar 

  47. Jaouen G (2005) Bioorganometallics. Wiley-VCH, Weinheim

    Book  Google Scholar 

  48. Schalley CA (2007) Analytical Methods in Supramolecular Chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  49. Felix V, Matthews SE, Beer PD, Drew MGB (2002) Selectivity of calix[4]tubes towards metal ions: a molecular dynamics study. Phys Chem Chem Phys 4:3849–3858

    Article  CAS  Google Scholar 

  50. Begel S, Puchta R, van Eldik R (2013) Host-Guest complexes of mixed glycol-bipyridine cryptands: prediction of ion selectivity by quantum chemical calculations, part V. Beilstein. J Org Chem 9:1252–1268

    CAS  Google Scholar 

  51. Puchta R, Meier R, van Eldik R (2007) Host–guest complexes of bicyclic hexaamine cryptands – prediction of ion selectivity by quantum chemical calculations. III. Aust J Chem 60:889–897

    Article  CAS  Google Scholar 

  52. Puchta R, van Eldik R (2007) Host–guest complexes of oligopyridine cryptands: prediction of ion selectivity by quantum chemical calculations. Eur J Inorg Chem 8:1120–1127

    Article  Google Scholar 

  53. Puchta R, van Eldik R (2008) Host-guest complexes of mixed glycol-phenanthroline cryptands: prediction of ion selectivity by quantum chemical calculations IV. J Incl Phenom Macrocycl Chem 60:383–392

    Article  CAS  Google Scholar 

  54. Galle M, Puchta R, van Eikema Hommes NJR, van Eldik R (2006) Rational design of cation hosts - prediction of cation selectivity by quantum chemical calculations. Z Phys Chem 220:511–523

    Article  CAS  Google Scholar 

  55. Lehn JM, Sauvage JP (1975) Cryptates. XVI. [2]-Cryptates. Stability and selectivity of alkali and alkaline-earth macrobicyclic complexes. J Am Chem Soc 97:6700–6707

    Article  CAS  Google Scholar 

  56. Cox BG, Garcias-Rosas J, Schneider H (1981) Solvent dependence of the stability of cryptate complexes. J Am Chem Soc 103:1384–1383

    Article  CAS  Google Scholar 

  57. Schmitt P, Beer PD, Drew MGB, Sheen PD (1997) Calix[4]tube: a tubular receptor with remarkable potassium ion selectivity. Angew Chem Int Ed Engl 36:1839–1842

    Google Scholar 

  58. Matthews SE, Rees NH, Felix V, Drew MGB, Beer PD (2003) Thallium π-cation complexation by calix[4]tubes: 205Tl NMR and x-ray evidence. Inorg Chem 42:729–734

    Article  CAS  Google Scholar 

  59. Puchta R, Galle M, van Eikema Hommes N, Pasgreta E, van Eldik R (2004) Evidence for associative ligand exchange processes on solvated lithium cations. Inorg Chem 43:8227–8229

    Article  CAS  Google Scholar 

  60. Puchta R, van Eikema Hommes NJR, van Eldik R (2005) Evidence for interchange ligand-exchange processes on solvated beryllium cations. Helv Chim Acta 88:911–922

    Article  CAS  Google Scholar 

  61. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr B 32:751–767

    Article  Google Scholar 

  62. Ravikumar I, Lakshminarayanan PS, Suresh E, Ghosh P (2009) Structural studies on encapsulation of tetrahedral and octahedral anions by a protonated octaaminocryptand cage. Beilstein J Org Chem 5:41. doi:10.3762/bjoc.5.41

    CAS  Google Scholar 

  63. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Phys Chem 97:5648–5652

    Article  Google Scholar 

  64. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  65. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  66. Dunning TH Jr, Hay PJ (1976) Mod Theor Chem 3:1–28

    Google Scholar 

  67. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms scandium to mercury. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  68. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements sodium to bismuth. J Chem Phys 82:284–298

    Article  Google Scholar 

  69. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for potassium to gold including the outermost core orbitals. J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  70. Huzinaga S (1984) Gaussian Basis Sets for Molecular Calculations. Elsevier, Amsterdam

    Google Scholar 

  71. Puchta R, Meier R, van Eikema Hommes NJR, van Eldik R (2006) Quantum chemical analysis of the enantiomerisation mechanism of complexes of the type [MII(XU)4]F+ (M = Pt, Pd, Ni; X = S, Se, Te; U = urea). Eur J Inorg Chem 20:4063–4067

    Article  Google Scholar 

  72. Scheurer A, Maid H, Hampel F, Saalfrank RW, Toupet L, Mosset P, Puchta R, van Eikema Hommes NJR (2005) Influence of the conformation of salen complexes on the stereochemistry of the asymmetric epoxidation of olefins. Eur J Org Chem 12:2566–2574

    Article  Google Scholar 

  73. Illner P, Zahl A, Puchta R, van Eikema Hommes N, Wasserscheid P, van Eldik R (2005) Mechanistic studies on the formation of Pt(II) hydroformylation catalysts in imidazolium-based ionic liquids. J Organomet Chem 690:3567–3576

    Article  CAS  Google Scholar 

  74. Weber CF, Puchta R, van Eikema Hommes N, Wasserscheid P, van Eldik R (2005) Transition-state effects of ionic liquids in substitution reactions of Pt(II) complexes. Angew Chem 117:6187–6192

    Article  Google Scholar 

  75. Weber CF, Puchta R, van Eikema Hommes N, Wasserscheid P, van Eldik R (2005) Transition-state effects of ionic liquids in substitution reactions of Pt(II) complexes. Angew Chem Int Ed 2005(44):6033–6038

    Article  Google Scholar 

  76. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian Inc, Wallingford

    Google Scholar 

  77. Stewart JJP (1989) J Comput Chem 10:209–220

    Article  CAS  Google Scholar 

  78. Stewart JJP (1991) J Comput Chem 12:320–341

    Article  CAS  Google Scholar 

  79. Anders E, Koch R, Freunscht P (1993) J Comput Chem 14:1301–1312

    Article  CAS  Google Scholar 

  80. Havlas Z, Nick S, Bock H (1992) Int J Quantum Chem 44:449–467

    Article  CAS  Google Scholar 

  81. Yu J, Hehre WJ to be published (implemented in Spartan, Version 4.1 and higher)

  82. VAMP 7.5a Clark T, Alex A, Beck B, Chandrasekhar J, Gedeck P, Horn A, Hutter M, Martin B, Rauhut G, Sauer W, Schindler T, Steinke T, Erlangen 1999

  83. PM3 augmented with sparcle parameter for Na+, Rb+, Cs+, Sr2+ and Ba2+ R. Puchta Ph.D. Thesis, Erlangen 2003

  84. MOPAC 6.0, Stewart, J. J. P. QCPE 455

  85. Stewart JJP (2007) J Mol Model 13:1173

    Article  CAS  Google Scholar 

  86. VAMP 10.0 Clark T, Alex A, Beck B, Burkhardt F, Chandrasekhar J, Gedeck P, Horn A, Hutter M, Martin B, Rauhut G, Sauer W, Schindler T, Steinke T, Erlangen 2003

Download references

Acknowledgments

The authors gratefully acknowledge the Regionales Rechenzentrum Erlangen (RRZE) for a generous allotment of computer time. We would like to thank Prof. Tim Clark for productive discussions and for hosting this work at the CCC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Puchta.

Additional information

This paper belongs to a Topical Collection on the occasion of Prof. Tim Clark’s 65th birthday

For part V see: [50]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Begel, S., Puchta, R. & van Eldik, R. Host-guest complexes of calix[4]tubes - prediction of ion selectivity by quantum chemical calculations VI. J Mol Model 20, 2200 (2014). https://doi.org/10.1007/s00894-014-2200-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2200-1

Keywords

Navigation