Kubelka J, Hofrichter J, Eaton WA (2004) The protein folding ‘speed limit’. Curr Opin Struct Biol 14(1):76–88
CAS
Article
Google Scholar
Wang JA, Zhu WL, Li GH, Hansmann UHE (2011) Velocity-scaling optimized replica exchange molecular dynamics of proteins in a hybrid explicit/implicit solvent. J Chem Phys 135(8):084115
Article
Google Scholar
Best RB, Mittal J (2010) Balance between α and β structures in Ab initio protein folding. J Phys Chem B 114:8790–8798
CAS
Article
Google Scholar
Duan Y, Kollman PA (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282(5389):740–744
CAS
Article
Google Scholar
Shen MY, Freed KF (2002) All-atom fast protein folding simulations: the villin headpiece. Proteins Struct Funct Genet 49(4):439–445
CAS
Article
Google Scholar
Zagrovic B, Snow CD, Shirts MR, Pande VS (2002) Simulation of folding of a small alpha-helical protein in atomistic detail using worldwide-distributed computing. J Mol Biol 323(5):927–937
CAS
Article
Google Scholar
Pande VS, Baker I, Chapman J, Elmer SP, Khaliq S, Larson SM, Rhee YM, Shirts MR, Snow CD, Sorin EJ, Zagrovic B (2003) Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing. Biopolymers 68:91–109
CAS
Article
Google Scholar
Lee I, Kim S, Lee J (2010) Dynamic folding pathway models of the villin headpiece subdomain (HP-36) structure. J Comput Chem 31(1):57–65
CAS
Article
Google Scholar
Sonavane UB, Ramadugu SK, Joshi RR (2008) Study of early events in the protein folding of villin headpiece using molecular dynamics simulation. J Biomol Struct Dyn 26(2):203–214
CAS
Article
Google Scholar
Jayachandran G, Vishal V, Pande VS (2006) Using massively parallel simulation and Markovian models to study protein folding: examining the dynamics of the villin headpiece. J Chem Phys 124(16):164902
Article
Google Scholar
De Mori GMS, Colombo G, Micheletti C (2005) Investigating protein folding by combining coarse-grained Monte Carlo sampling and all-atom Molecular Dynamics: characterization of the Villin Headpiece folding mechanism. Proteins Struct Funct Bioinforma 58(2):459–471
Article
Google Scholar
McKnight CJ, Doering DS, Matsudaira PT, Kim PS (1996) A Thermostable 35-residue subdomain within villin headpiece. J Mol Biol 260:126–134
CAS
Article
Google Scholar
Lee MR, Duan Y, Kollman PA (2000) Use of MM-PB/SA in estimating the free energies of proteins: application to native, intermediates, and unfolded villin headpiece. Proteins Struct Funct Genet 39(4):309–316
CAS
Article
Google Scholar
Kubelka J, Eaton WA, Hofrichter J (2003) Experimental tests of villin subdomain folding simulations. J Mol Biol 329(4):625–630
CAS
Article
Google Scholar
Tang YF, Rigotti DJ, Fairman R, Raleigh DP (2004) Peptide models provide evidence for significant structure in the denatured state of a rapidly folding protein: the villin headpiece subdomain. Biochemistry 43(11):3264–3272
CAS
Article
Google Scholar
Wang MH, Tang YF, Sato SS, Vugmeyster L, McKnight CJ, Raleigh DP (2003) Dynamic NMR line-shape analysis demonstrates that the villin headpiece subdomain folds on the microsecond time scale. J Am Chem Soc 125(20):6032–6033
CAS
Article
Google Scholar
Brewer SH, Vu DM, Tang YF, Li Y, Franzen S, Raleigh DP, Dyer RB (2005) Effect of modulating unfolded state structure on the folding kinetics of the villin headpiece subdomain. Proc Natl Acad Sci U S A 102(46):16662–16667
CAS
Article
Google Scholar
Havlin RH, Tycko R (2005) Probing site-specific conformational distributions in protein folding with solid-state NMR. Proc Natl Acad Sci U S A 102(9):3284–3289
CAS
Article
Google Scholar
Herges T, Wenzel W (2005) Free-energy landscape of the villin headpiece in an all-atom force field. Structure 13(4):661–668
CAS
Article
Google Scholar
Srinivasan R, Fleming PJ, Rose GD (2004) Ab initio protein folding using LINUS. Methods Enzymol 383:48–66
CAS
Article
Google Scholar
Duan Y, Wang L, Kollman PA (1998) The early stage of folding of villin headpiece subdomain observed in a 200-nanosecond fully solvated molecular dynamics simulation. Proc Natl Acad Sci U S A 95(17):9897–9902
CAS
Article
Google Scholar
Zagrovic B, Pande VS (2006) Simulated unfolded-state ensemble and the experimental NMR structures of villin headpiece yield similar wide-angle solution X-ray scattering profiles. J Am Chem Soc 128(36):11742–11743
CAS
Article
Google Scholar
Jayachandran G, Vishal V, Garcia AE, Pande VS (2007) Local structure formation in simulations of two small proteins. J Struct Biol 157(3):491–499
CAS
Article
Google Scholar
Colubri A, Jha AK, Shen MY, Sali A, Berry RS, Sosnick TR, Freed KF (2006) Minimalist representations nearest neighbor effects in and the importance of protein folding simulations. J Mol Biol 363(4):535–557
Article
Google Scholar
Bandyopadhyay S, Chakraborty S, Bagchi B (2006) Coupling between hydration layer dynamics and unfolding kinetics of HP-36. J Chem Phys 125(8):084912
Article
Google Scholar
Jang SM, Kim E, Shin S, Pak Y (2003) Ab initio folding of helix bundle proteins using molecular dynamics simulations. J Am Chem Soc 125(48):14841–14846
CAS
Article
Google Scholar
Lin CY, Hu CK, Hansmann UHE (2003) Parallel tempering simulations of HP-36. Proteins Struct Funct Genet 52(3):436–445
CAS
Article
Google Scholar
Yang J, Wallin S, Shakhnovich E (2008) Universality and diversity of folding mechanics for three-helix bundle proteins. Proc Natl Acad Sci U S A 105:895–900
CAS
Article
Google Scholar
Wei Y, Nadler W, Hansmann UHE (2008) Backbone and side-chain ordering in a small protein. J Chem Phys 128:025105
Article
Google Scholar
Ripoll DR, Vila JA, Scheraga HA (2004) Folding of the villin headpiece subdomain from random structures. Analysis of the charge distribution as a function of pH. J Mol Biol 339(4):915–925
CAS
Article
Google Scholar
Chiu TK, Kubelka J, Herbst-Irmer R, Eaton WA, Hofrichter J, Davies DR (2005) High-resolution x-ray crystal structures of the villin headpiece subdomain, an ultrafast folding protein. Proc Natl Acad Sci U S A 102(21):7517–7522
CAS
Article
Google Scholar
Kubelka J, Chiu TK, Davies DR, Eaton WA, Hofrichter J (2006) Sub-microsecond protein folding. J Mol Biol 359(3):546–553
CAS
Article
Google Scholar
Mittal J, Best RB (2010) Tackling force-field bias in protein folding simulations: folding of villin HP35 and pin WW domains in explicit water. Biophys J 99:L26–L28
CAS
Article
Google Scholar
Srinivas G, Bagchi B (2002) Foldability and the funnel of HP-36 protein sequence: use of hydropathy scale in protein folding. J Chem Phys 116(19):8579–8587
CAS
Article
Google Scholar
Fernández A, Shen MY, Colubri A, Sosnick TR, Berry RS, Freed KF (2003) Large-scale context in protein folding: villin headpiece. Biochemistry 42(3):664–671
Article
Google Scholar
van der Spoel D, Lindahl E (2003) Brute-force molecular dynamics simulations of Villin headpiece: comparison with NMR parameters. J Phys Chem B 107(40):11178–11187
Article
Google Scholar
De Mori GMS, Micheletti C, Colombo G (2004) All-atom folding simulations of the villin headpiece from stochastically selected coarse-grained structures. J Phys Chem B 108(33):12267–12270
Article
Google Scholar
Mukherjee A, Bagchi B (2004) Contact pair dynamics during folding of two small proteins: chicken villin head piece and the Alzheimer protein beta-amyloid. J Chem Phys 120(3):1602–1612
CAS
Article
Google Scholar
Wen EZ, Hsieh MJ, Kollman PA, Luo R (2004) Enhanced ab initio protein folding simulations in Poisson-Boltzmann molecular dynamics with self-guiding forces. J Mol Graph Model 22(5):415–424
CAS
Article
Google Scholar
Zagrovic B, Snow CD, Khaliq S, Shirts MR, Pande VS (2002) Native-like mean structure in the unfolded ensemble of small proteins. J Mol Biol 323(1):153–164
CAS
Article
Google Scholar
Jani V, Sonavane U, Joshi R (2011) Microsecond scale replica exchange molecular dynamic simulation of villin headpiece: an insight into the folding landscape. J Biomol Struct Dyn 28(6):845–860
CAS
Article
Google Scholar
Hansmann UHE, Wille LT (2002) Global optimization by energy landscape paving. Phys Rev Lett 88(6):068105
Article
Google Scholar
Chakraborty S, Bandyopadhyay S (2008) Dynamics of water in the hydration layer of a partially unfolded structure of the protein HP-36. J Phys Chem B 112(20):6500–6507
CAS
Article
Google Scholar
Wickstrom L, Okur A, Song K, Hornak V, Raleigh D, Simmerling C (2006) The unfolded state of the villin headpiece helical subdomain: computational studies of the role of locally stabilized structure. J Mol Biol 360(5):1094–1107
CAS
Article
Google Scholar
Zhang C, Ma J (2010) Enhanced sampling and applications in protein folding in explicit solvent. J Chem Phys 132(24):244101
Article
Google Scholar
Yang JS, Chen WW, Skolnick J, Shakhnovich EI (2007) All-atom ab initio folding of a diverse set of proteins. Structure 15:53–63
Article
Google Scholar
Best RB, Hummer G (2009) Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides. J Phys Chem B 113(26):9004–9015
CAS
Article
Google Scholar
Best RB, Mittal J (2010) Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse. J Phys Chem B 114:14916–14923
CAS
Article
Google Scholar
Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) How fast-folding proteins fold. Science 334:517–520
CAS
Article
Google Scholar
Piana S, Lindorff-Larsen K, Shaw DE (2011) How robust are protein folding simulations with respect to force field parameterization? Biophys J 100:L47–L49
CAS
Article
Google Scholar
Hansen KC, Rock RS, Larsen RW, Chan SI (2000) A method for photoinitating protein folding in a nondenaturing environment. J Am Chem Soc 122:11567–11568
CAS
Article
Google Scholar
McKnight CJ, Matsudaira PT, Kim PS (1997) NMR structure of the 35-residue villin headpiece subdomain. Nat Struct Biol 4(3):180–184
CAS
Article
Google Scholar
Zhang DW, Zhang JZH (2003) Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy. J Chem Phys 119(7):3599–3605
CAS
Article
Google Scholar
Ji CG, Mei Y, Zhang JZH (2008) Developing polarized protein-specific charges for protein dynamics: MD free energy calculation of pK(a) shifts for Asp(26)/Asp(20) in thioredoxin. Biophys J 95(3):1080–1088
CAS
Article
Google Scholar
Duan LL, Mei Y, Zhang DW, Zhang QG, Zhang JZH (2010) Folding of a helix at room temperature is critically aided by electrostatic polarization of intraprotein hydrogen bonds. J Am Chem Soc 132(32):11159–11164
CAS
Article
Google Scholar
Duan LL, Mei Y, Zhang QG, Zhang JZH (2009) Intra-protein hydrogen bonding is dynamically stabilized by electronic polarization. J Chem Phys 130(11):115102
Article
Google Scholar
Ji CG, Zhang JZH (2008) Protein polarization is critical to stabilizing AF-2 and helix-2′ domains in ligand binding to PPAR-gamma. J Am Chem Soc 130(50):17129–17133
CAS
Article
Google Scholar
Tong Y, Ji CG, Mei Y, Zhang JZH (2009) Simulation of NMR data reveals that proteins’ local structures are stabilized by electronic polarization. J Am Chem Soc 131(24):8636–8641
CAS
Article
Google Scholar
Ji CG, Zhang JZH (2009) NMR scalar coupling constant reveals that intraprotein hydrogen bonds are dynamically stabilized by electronic polarization. J Phys Chem B 113(42):13898–13900
CAS
Article
Google Scholar
Tong Y, Mei Y, Li YL, Ji CG, Zhang JZH (2010) Electrostatic polarization makes a substantial contribution to the free energy of Avidin-biotin binding. J Am Chem Soc 132(14):5137–5142
CAS
Article
Google Scholar
Gao Y, Lu XL, Duan LL, Zhang JZH, Mei Y (2012) Polarization of intraprotein hydrogen bond is critical to thermal stability of short helix. J Phys Chem B 116:549–554
CAS
Article
Google Scholar
Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins Struct Funct Bioinforma 55(2):383–394
CAS
Article
Google Scholar
Feig M, Onufriev A, Lee MS, Im W, Case DA, Brooks CL (2004) Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. J Comput Chem 25(2):265–284
CAS
Article
Google Scholar
Pastor RW, Brooks BR, Szabo A (1988) An analysis of the accuracy of langevin and molecular dynamics algorithm. Mol Phys 65(6):1409–1419
Article
Google Scholar
Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constrains: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341
CAS
Article
Google Scholar
Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE III, DelBolt S, Ferguson D, Seibel G, Kollman P (1995) AMBER, A package of computer programs for applying molecular mechanics, Normal mode analysis, Molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91:1–41
CAS
Article
Google Scholar
Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13:1011–1021
CAS
Article
Google Scholar
Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1995) Multidimensional free-energy calculations using the weighted histogram analysis method. J Comput Chem 16:1339–1350
CAS
Article
Google Scholar
Roux B (1995) The calculation of the potential of mean force using computer simulations. Comput Phys Commun 91:275–282
CAS
Article
Google Scholar
Zhou RH (2003) Free energy landscape of protein folding in water: explicit vs. implicit solvent. Proteins Struct Funct Genet 53:148–161
CAS
Article
Google Scholar
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJ, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamao C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2010) Gaussian 09, revision B.01. Gaussian, Inc, Wallingford
Google Scholar
Gilmanshin R, Williams S, Callender RH, Woodruff WH, Dyer RB (1997) Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc Natl Acad Sci U S A 94:3709–3713
CAS
Article
Google Scholar
Rajan A, Freddolino PL, Schulten K (2010) Going beyond clustering in MD trajectory analysis: an application to villin headpiece folding. PLoS ONE 5(4):e9890
Article
Google Scholar
Nymeyer H, Garcia AE (2003) Simulation of the folding equilibrium of alpha-helical peptides: a comparison of the generalized born approximation with explicit solvent. Proc Natl Acad Sci U S A 100(24):13934–13939
CAS
Article
Google Scholar
Zhou RH, Berne BJ (2002) Can a continuum solvent model reproduce the free energy landscape of a beta-hairpin folding in water? Proc Natl Acad Sci U S A 99(20):12777–12782
CAS
Article
Google Scholar
Duan LL, Gao Y, Mei Y, Zhang QG, Tang B, Zhang JZH (2012) Folding of a helix is critically stabilized by polarization of backbone hydrogen bonds: study in explicit water. J Phys Chem B 116:3430–3435
CAS
Article
Google Scholar
Cheng WY, Chen JZ, Liang ZQ, Li GH, Yi CH, Wang W, Wang KY (2012) A computational analysis of interaction mechanisms of peptide and non-peptide inhibitors with MDMX based on molecular dynamics simulation. Comput Theor Chem 984:43–50
CAS
Article
Google Scholar