Skip to main content
Log in

A theoretical study on ascorbic acid dissociation in water clusters

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Dissociation of ascorbic acid in water has been studied by using a cluster model. It was examined by density functional theory (DFT) with the В3LYP, M06, and wB97XD functionals and a 6–311++G(d,p) basis set. The thermodynamic and kinetic characteristics of proton transfer from ascorbic acid molecule to water clusters were calculated as well as the equilibrium constants (pK a ) for the related processes. The used functionals in the DFT method together with continuum solvent models provided results close to the experimental data for the dissociation constant of ascorbic acid in aqueous solution.

Route of ascorbic acid dissociation in aqueous solution

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davey MW, Montagu MV, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJ, Strain JJ, Favell D, Fletcher J (2000) Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825–860

    Article  CAS  Google Scholar 

  2. Garcia-Diaz DF, Campion J, Milagro FI, Paternain L, Solomon A, Martinez JA (2009) Ascorbic acid oral treatment modifies lipolytic response and behavioural activity but not glucocorticoid metabolism in cafeteria diet-fed rats. Acta Physiol 195:449–457

    Article  CAS  Google Scholar 

  3. Cameron E (1976) Biological function of ascorbic acid and the pathogenesis of scurvy: A working hypothesis. Med Hypotheses 2:154–163

    Article  CAS  Google Scholar 

  4. Austria R, Semenzato A, Bettero A (1997) Stability of vitamin C derivatives in solution and topical formulations. J Pharmaceut Biomed 15:795–801

    Article  CAS  Google Scholar 

  5. Piao H, Kamiya N, Cui F, Goto M (2011) Preparation of a solid-in-oil nanosuspension containing l-ascorbic acid as a novel long-term stable topical formulation. Int J Pharm 420:156–160

    Article  CAS  Google Scholar 

  6. Taqui Khan MM, Martell AE (1967) Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. I. Cupric and ferric ion catalyzed oxidation. J Am Chem Soc 89:4176–4185

    Article  Google Scholar 

  7. Abe Y, Okada S, Nakao R, Horii T, Inoue H, Taniguchi S, Yamabe SJ (1992) A molecular orbital study on the reactivity of L-ascorbic acid towards OH radical. J Chem Soc Perk Trans 2:2221–2232

    Article  Google Scholar 

  8. Meng XG, Kou XM, Xie JQ, Du J, Zeng XC (2004) Microcalorimetric investigation on the kinetics of the oxidation of ascorbic acid with hydrogen peroxide. Chin J Chem 22:515–520

    Article  CAS  Google Scholar 

  9. Lee C, Sosa C, Novoa JJ (1995) Evidence of the existence of dissociated water molecules in water clusters. J Chem Phys 103:4360–4362

    Article  CAS  Google Scholar 

  10. Jensen JO, Samuels AC, Krishnan PN, Burke LA (1997) Ion pair formation in water clusters: a theoretical study. Chem Phys Lett 276:145–151

    Article  CAS  Google Scholar 

  11. Cárdenas R, Lagúnez-Otero J, Flores-Rivero A (1998) Ab initio study of the reaction mechanism of water dissociation into the ionic species OH and H3O+. Int J Quantum Chem 68:253–259

    Article  Google Scholar 

  12. Bernal-Uruchurtu MI, Ortega-Blake I (1999) On the molecular basis of water hydrolysis. A detailed ab initio study. J Phys Chem A 103:884–892

    Article  CAS  Google Scholar 

  13. Re S, Osamura Y, Morokuma K (1999) Coexistence of neutral and ion-pair clusters of hydrated sulfuric acid H2SO4(H2O)n (n = 1 − 5) − A molecular orbital study. J Phys Chem A 103:3535–3547

    Article  CAS  Google Scholar 

  14. Temelso B, Morrell TE, Shields RM, Allodi MA, Wood EK, Kirschner KN, Castonguay TC, Archer KA, Shields GC (2012) Quantum mechanical study of sulfuric acid hydration: atmospheric implications. J Phys Chem A 116:2209–2224

    Article  CAS  Google Scholar 

  15. Smith A, Vincent MA, Hillier IH (1999) Mechanism of acid dissociation in water clusters: Electronic structure studies of (H2O)nHX (n = 4, 7; X = OH, F, HS, HSO3, OOSO2H, OOH·SO2). J Phys Chem A 103:1132–1139

    Article  CAS  Google Scholar 

  16. Tachikawa M (2002) Isotope effect and cluster size dependence for water and hydrated hydrogen halide clusters: multi-component molecular orbital approach. Mol Phys 100:881–901

    Article  CAS  Google Scholar 

  17. Planas M, Lee C, Novoa JJ (1996) Kinetics of the proton transfer in X···(H2O)4 clusters (X = H2O, NH3, H2S, and HCl): Evidence of a concerted mechanism. J Phys Chem 100:16495–16501

    Article  CAS  Google Scholar 

  18. Lee C, Sosa C, Planas M, Novoa JJ (1996) A theoretical study of the ionic dissociation of HF, HCl, and H2S in water clusters. J Chem Phys 104:7081–7085

    Article  CAS  Google Scholar 

  19. Tachikawa M (2004) A density functional study on hydrated clusters of orthoboric acid, B(OH)3(H2O) n (n = 1–5). J Mol Struct Theochem 710:139–150

    Article  CAS  Google Scholar 

  20. Demianenko E, Ilchenko M, Grebenyuk A, Lobanov V (2011) A theoretical study on orthosilicic acid dissociation in water clusters. Chem Phys Lett 515:274–277

    Article  CAS  Google Scholar 

  21. Boese AD, Forbert H, Masia M, Tekin A, Marx D, Jansen G (2011) Constructing simple yet accurate potentials for describing the solvation of HCl/water clusters in bulk helium and nanodroplets. Phys Chem Chem Phys 13:14550–14564

    Article  CAS  Google Scholar 

  22. Zwier TS (2009) Squeezing the Water Out of HCl(aq). Science 324:1522–1523

    Article  CAS  Google Scholar 

  23. Walewski L, Forbert H, Marx D (2013) Revealing the Subtle Interplay of Thermal and Quantum Fluctuation Effects on Contact Ion Pairing in Microsolvated HCl. Chem Phys Chem 14:817–826

    Article  CAS  Google Scholar 

  24. Carlson GL, Cable H, Pedersen LG (1976) An ab initio study of ascorbic acid. Chem Phys Lett 38:75–78

    Article  CAS  Google Scholar 

  25. Allen RN, Shukla MK, Reed D, Leszczynski J (2006) Ab initio study of the structural properties of ascorbic acid (vitamin C). Int J Quantum Chem 106:2934–2943

    Article  CAS  Google Scholar 

  26. Yadav RA, Rani P, Kumar M, Singh R, Singh P, Singh NP (2011) Experimental IR and Raman spectra and quantum chemical studies of molecular structures, conformers and vibrational characteristics of l-ascorbic acid and its anion and cation. Spectrochim Acta A 84:6–21

    Article  CAS  Google Scholar 

  27. Al-Laham MA, Petersson GA, Haake P (1991) Ab initio study of ascorbic acid conformations. J Comput Chem 12:113–118

    Article  CAS  Google Scholar 

  28. Mora MA, Melendez FJ (1998) A Conformational ab initio study of ascorbic acid. J Mol Struct Theochem 454:175–185

    Article  CAS  Google Scholar 

  29. Bailey DM, George WO, Gutowski M (2009) Theoretical studies of l-ascorbic acid (vitamin C) and selected oxidised, anionic and free-radical forms. J Mol Struct Theochem 910:61–68

    Article  CAS  Google Scholar 

  30. Singh P, Singh NP, Yadav RA (2010) Study of the optimized molecular structures and vibrational characteristics of neutral l-ascorbic acid and its anion and cation using density functional theory. J Chem Pharm Res 2:656–681

    CAS  Google Scholar 

  31. Dimitrova Y (2006) Theoretical study of the changes in the vibrational characteristics arising from the hydrogen bonding between Vitamin C (l-ascorbic acid) and H2O. Spectrochim Acta A 63:427–437

    Article  CAS  Google Scholar 

  32. Kumler WD, Daniels TC (1935) Titration curves and dissociation constants of l-ascorbic acid (Vitamin C) and diethyl dihydroxymaleate. J Am Chem Soc 57:1929–1930

    Article  CAS  Google Scholar 

  33. Taqui Khan MM, Martell AE (1969) Kinetics of metal ion and metal chelate catalyzed oxidation of ascorbic acid. IV. Uranyl ion catalyzed oxidation. J Am Chem Soc 91:4668–4672

    Article  CAS  Google Scholar 

  34. Jaiswal PV, Ijeri VS, Srivastava AK (2005) Effect of surfactants on the dissociation constants of ascorbic and maleic acids. Colloids Surfaces B 46:45–51

    Article  CAS  Google Scholar 

  35. Kreye WC, Seybold PG (2009) Correlations between quantum chemical indices and the pKas of a diverse set of organic phenols. Int J Quantum Chem 109:3679–3684

    Article  CAS  Google Scholar 

  36. Juhasz JR, Pisterzi LF, Gasparro DM, Almeida DRP, Csizmadia IG (2003) The effects of conformation on the acidity of ascorbic acid: a density functional study. J Mol Struct Theochem 666–667:401–407

    Article  CAS  Google Scholar 

  37. Montgomery JA Jr, Peralta PE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  38. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5653

    Article  CAS  Google Scholar 

  39. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  40. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120:215–241

    Article  CAS  Google Scholar 

  41. Valero R, Costa R, Moreira IPR, Truhlar DG, Illas F (2008) Performance of the M06 family of exchange-correlation functionals for predicting magnetic coupling in organic and inorganic molecules. J Chem Phys 128:114103

    Google Scholar 

  42. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  43. Petković M (2012) O–H stretch in phenol and its hydrogen-bonded complexes: band position and relaxation pathways. J Phys Chem A 116:364–371

    Article  CAS  Google Scholar 

  44. Fortunelli A, Tomasi J (1994) The implementation of density functional theory within the polarizable continuum model for solvation. Chem Phys Lett 231:34–39

    Article  CAS  Google Scholar 

  45. Takano Y, Houk KN (2005) Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theory Comput 1:70–77

    Article  CAS  Google Scholar 

  46. Jang YH, Sowers LC, Ģağin T, Goddard WA III (2001) First principles calculation of pKa values for 5-substituted uracils. J Phys Chem A 105:274–280

    Article  CAS  Google Scholar 

  47. Jensen F (2007) Introduction to computational chemistry. John Wiley & Sons, Odense

    Google Scholar 

  48. Murrell JN, Laidler KJ (1968) Symmetries of activated complexes. Trans Faraday Soc 64:371–377

    Article  CAS  Google Scholar 

  49. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  50. Plumley JA, Dannenberg JJ (2011) A comparison of the behavior of functional/basis set combinations for hydrogen-bonding in the water dimer with emphasis on basis set superposition error. J Comput Chem 32:1519–1527

    Article  CAS  Google Scholar 

  51. Berger S (1977) Vitamin C—A 13C magnetic resonance study. Tetrahedron 33:1587–1589

    Article  CAS  Google Scholar 

  52. Costanzo F, Sulpiz M, Vandevondele J, Della Valle RG, Sprik M (2007) Ab initio molecular dynamics study of ascorbic acid in aqueous solution. Mol Phys 105:17–23

    Article  CAS  Google Scholar 

  53. Shestakov AF (2003) Quantum-chemical verification of the Polanyi–Semenov generalized relationship. Dokl Phys Chem 393:339–342

    Article  CAS  Google Scholar 

  54. Tsendra O, Lobanov V, Grebenyuk A (2008) Structure and Properties of Hydrated Complexes of Methylphosphonic Acids. J Mol Struct THEOCHEM 864:14–19

    Article  CAS  Google Scholar 

  55. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors are grateful to Professor Jerzy Leszczynski (Department of Chemistry and Biochemistry, Jackson State University, MS, USA) for providing access to computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugeniy Demianenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demianenko, E., Ilchenko, M., Grebenyuk, A. et al. A theoretical study on ascorbic acid dissociation in water clusters. J Mol Model 20, 2128 (2014). https://doi.org/10.1007/s00894-014-2128-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2128-5

Keywords

Navigation