Skip to main content

Advertisement

Log in

Influence of the nature of hydrogen halides and metal cations on the interaction types between borazine and hydrogen halides

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The interactions between the H atom of borazine and hydrogen halide (HX, X = F, Cl, Br, and I) have been studied systematically. Four structures (a, b, c, and d) have been observed. The cyclic structure a is combined through a NH···X hydrogen bond and a BH···HX dihydrogen bond, a NH···X hydrogen bond and a BH···X halogen-hydride interaction are responsible for the cyclic structure b, structures c and d are maintained by a dihydrogen bond and a halogen-hydride interaction, respectively. Structures a and b are stable in energy, while structures c and d are unstable in energy. Structures a and b can transform each other through structure c or d. The interaction mode and strength are related to the nature of HX. The cation-π interaction of borazine with Li+ and Mg2+ causes a change in the interaction mode in structures a and b, and has an enhancing effect on the interaction strength in a and b.

The interaction modes between the H atom of borazine and hydrogen halide (HX, X = F, Cl, Br, and I) can be regulated by the nature of HX and cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New York

    Google Scholar 

  2. Moore TS, Winmill TF (1912) J Chem Soc 101:1635–1676

    Article  CAS  Google Scholar 

  3. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1637–1641

    Article  CAS  Google Scholar 

  4. Politzer P, Murray JS (2013) ChemPhysChem 14:278–294

    Article  CAS  Google Scholar 

  5. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  6. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  7. Wolters LP, Bickelhaupt FM (2012) Chem Open 1:96–105

    CAS  Google Scholar 

  8. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Angew Chem Int Ed 47:6114–6127

    Article  CAS  Google Scholar 

  9. Metrangolo P, Resnati G (2008) Science 321:918–919

    Article  CAS  Google Scholar 

  10. Li QZ, Lin QQ, Li WZ, Cheng JB, Gong BA, Sun JZ (2008) ChemPhysChem 9:2265–2269

    Article  CAS  Google Scholar 

  11. Estarellas C, Frontera A, Quiñonero D, Deyà PM (2011) ChemPhysChem 12:2742–2750

    Article  CAS  Google Scholar 

  12. Li QZ, Li R, Liu XF, Li WZ, Cheng JB (2012) ChemPhysChem 13:1205–1212

    Article  CAS  Google Scholar 

  13. Li QZ, Li R, Liu ZB, Li WZ, Cheng JB (2011) J Comput Chem 32:3296–3303

    Article  CAS  Google Scholar 

  14. Lu YX, Liu YT, Li HY, Zhu X, Liu HL, Zhu WL (2012) ChemPhysChem 13:2154–2161

    Article  CAS  Google Scholar 

  15. Custelcean R, Jackson JE (2001) Chem Rev 101:1963–1980

    Article  CAS  Google Scholar 

  16. Lipkowski P, Grabowski SJ, Leszczynski J (2006) J Phys Chem A 110:10296–10302

    Article  CAS  Google Scholar 

  17. Li QZ, Done X, Jing B, Li WZ, Cheng JB, Gong BA, Yu ZW (2010) J Comput Chem 31:1662–1669

    Article  Google Scholar 

  18. An XL, Jing B, Li QZ (2010) J Phys Chem 114:6438–6443

    Article  CAS  Google Scholar 

  19. Li QZ, Yuan HF, Jing B, Liu ZB, Li WZ, Cheng JB, Gong BA, Sun JZ (2010) J Mol Struct THEOCHEM 942:145–148

    Article  CAS  Google Scholar 

  20. Wiberg E, Bolz A (1940) Ber Dtsch Chem Ges 73:209–232

    Article  Google Scholar 

  21. Bettinger HF, Kar T, Sanchez-Garcia E (2009) J Phys Chem A 113:3353–3359

    Article  CAS  Google Scholar 

  22. Miao R, Yang GS, Zhao CM, Hong J, Zhu LG (2005) J Mol Struct THEOCHEM 715:91–100

    Article  CAS  Google Scholar 

  23. Rasekh MF Struct Chem. doi:10.1007/s11224-012-9954-9

  24. Ravinder P, Subramanian V (2010) J Phys Chem A 114:5565–5572

    Article  CAS  Google Scholar 

  25. Wu JY, Yan H, Chen H, Dai GL, Zhong AG (2012) Comput Theor Chem 984:51–56

    Article  CAS  Google Scholar 

  26. Ma P, Li J, Feng HY (2009) Chem Res Appl 21:810–816

    CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Scalmani G, Cossi M, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, KleneM LX, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, ZakrzewskiVG DS, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Gonzalez C, Wong MW, Pittsburgh PA, Pople JA (2009) Gaussian 09, revision A02. Gaussian Inc, Wallingford

    Google Scholar 

  28. Lu YX, Zou JW, Fan JC, Zhao WN, Jiang YJ, Yu QS (2009) J Comput Chem 30:725–732

    Article  CAS  Google Scholar 

  29. Fileti EE, Coutinho K, Canuto S (2004) Adv Quantum Chem 47:51–63

    Article  CAS  Google Scholar 

  30. Boys SB, Bernardy F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  31. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  32. Bader RFW (2000) AIM2000. University of Applied Sciences, Bielefeld

    Google Scholar 

  33. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  34. Humphrey W, Dalke A, Schulten K (1996) J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  35. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  36. ADF2008.01, SCM, theoretical chemistry. Vrije Universiteit, Amsterdam, The Netherlands. http://www.scm.com

  37. Lesiuk M, Zachara J (2013) J Chem Phys 138:074107

    Article  Google Scholar 

  38. Li QZ, Yuan HF, Jing B, Liu ZB, Li WZ, Cheng JB, Gong BA, Sun JZ (2010) Mol Phys 108:611–617

    Article  CAS  Google Scholar 

  39. Koch U, Popelier PLA (1995) J Phys Chem A 99:9747–9754

    Article  CAS  Google Scholar 

  40. Lipkowski P, Grabowski SJ, Robinson TL, Leszczynski J (2004) J Phys Chem A 108:10865–10872

    Article  CAS  Google Scholar 

  41. Tsuzuki S, Fujii A (2008) Phys Chem Chem Phys 10:2584–2594

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51278443), the Outstanding Youth Natural Science Foundation of Shandong Province (JQ201006), and the Program for New Century Excellent Talents in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuo, H., Li, Q., An, X. et al. Influence of the nature of hydrogen halides and metal cations on the interaction types between borazine and hydrogen halides. J Mol Model 20, 2089 (2014). https://doi.org/10.1007/s00894-014-2089-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2089-8

Keywords

Navigation