Skip to main content
Log in

Density functional studies of the stepwise substitution of pyridine, pyridazine, pyrimidine, pyrazine, and 1,3,5-triazine with BCO

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structures, stabilities, and aromaticities of a series of (BCO) n (CH)5−n N (n = 0–5), (BCO) n (CH)4−n N2 (n = 0–4), and 1,3,5-(BCO) n (CH)3−n N3 (n = 0–3) clusters were investigated at the B3LYP density functional level of theory. The most stable positional isomers of individual clusters were obtained. All of the calculated CO binding energies were positive, suggesting that the BCO-substituted species are stable. It was found that the BCO-substituted structures are much less strained than their carbocation counterparts. The negative nucleus-independent chemical shifts (NICSs) obtained show that all of the BCO-substituted species possess three-dimensional aromaticity, in good accord with the aromaticities of the corresponding hydrocarbon species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hoffmann R (1982) Angew Chem Int Ed Engl 21:711–717

    Article  Google Scholar 

  2. Papakondylis A, Miliordos E, Mavridis A (2004) J Phys Chem A 108:4335–4340

    Article  CAS  Google Scholar 

  3. Maier G, Reisenauer HP, Henkelmann J, Kliche C (1988) Angew Chem Int Ed Engl 27:294–295

    Article  Google Scholar 

  4. Cioslowski J, Hay PJ (1990) J Am Chem Soc 112:1707–1710

    Article  CAS  Google Scholar 

  5. Wu HS, Jiao H, Wang ZX, von Ragué Schleyer P (2003) J Am Chem Soc 125:4428–4429

    Article  CAS  Google Scholar 

  6. Wu HS, Qin XF, Xu XH, Jiao H, von Ragué Schleyer P (2005) J Am Chem Soc 127:2334–2338

    Article  CAS  Google Scholar 

  7. Wang ZX, Chen ZF, Jiao H, von Ragué Schleyer P (2005) J Theo Comp Chem 4:669–688

    Article  CAS  Google Scholar 

  8. Billesa F, Mikoschb H, Hollyc S (1998) J Mol Struct (Theochem) 423:225–234

    Article  Google Scholar 

  9. Bhattacharyya A, Nirmala R, Subramanian S (1995) J Mol Struct (Theochem) 339:245–254

    Article  CAS  Google Scholar 

  10. Li P, Zhao C, Smith MD, Shimizu KD (2013) J Org Chem 78(11):5303–5313

    Article  CAS  Google Scholar 

  11. Smith QA, Gordon MS, Slipchenko LV (2011) J Phys Chem A 115(18):4598–4609

    Article  CAS  Google Scholar 

  12. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  13. Mielich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  Google Scholar 

  14. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2262

    Article  CAS  Google Scholar 

  15. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–655

    Article  CAS  Google Scholar 

  16. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  17. von Ragué Schleyer P, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) J Am Chem Soc 118:6317–6318

    Article  Google Scholar 

  18. von Ragué Schleyer P, Jiao H, van Eikema Hommes NJR, Malkin VG, Malkina OL (1997) J Am Chem Soc 119:12669–12670

    Article  Google Scholar 

  19. von Ragué Schleyer P, Manoharan M, Wang ZX, Kiran B, Jiao H, Puchta R, van Eikema Hommes NJR (2001) Org Lett 3:2465–2468

    Article  Google Scholar 

  20. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  21. Frisch MJ et al (2003) Gaussian 03. Gaussian, Inc., Pittsburgh

    Google Scholar 

  22. Rathke J, Schaefer R (1974) Inorg Chem 13:760–761

    Article  CAS  Google Scholar 

  23. Strauss SH (1997) Chemtracts Inorg Chem 10:77–103

    CAS  Google Scholar 

  24. Lupinetti AJ, Frenking G, Strauss SH (1998) Angew Chem Int Ed Engl 37:2113–2116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 2103103), the Natural Science Foundation of Shandong Province (no. ZR2011EL005), and the Natural Science Foundation of Ludong University (no. LY2010006). We acknowledge the support provided by Shan Xi Normal University in relation to the calculations performed in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Fang Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, XF., Wang, F. & Wu, HS. Density functional studies of the stepwise substitution of pyridine, pyridazine, pyrimidine, pyrazine, and 1,3,5-triazine with BCO. J Mol Model 20, 2079 (2014). https://doi.org/10.1007/s00894-014-2079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2079-x

Keywords

Navigation