Skip to main content
Log in

Evaluation of density functional methods on the geometric and energetic descriptions of species involved in Cu+-promoted catalysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have evaluated the performance of 15 density functionals of diverse complexity on the geometry optimization and energetic evaluation of model reaction steps present in the proposed reaction mechanisms of Cu(I)-catalyzed indole synthesis and click chemistry of iodoalkynes and azides. The relative effect of the Cu+ ligand on the relative strength of Cu+-alkyne interactions, and the strong preference for a π-bonding mode is captured by all functionals. The best energetic correlations with MP2 are obtained with PBE0, M06-L, and PBE1PW91, which also provide good quality geometries. Furthermore, PBE0 and PBE1PW91 afford the best agreement with the high-level CCSD(T) computations of the deprotonation energies of Cu+-coordinated eneamines, where MP2 strongly disagrees with CCSD(T) and the examined DFT functionals. PBE0 also emerged as the most suitable functional for the study of the energetics and geometries of Cu+ hydrides, while at the same time correctly capturing the influence of the Cu+ ligands on the metal reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Miyaura N, Suzuki A (1995) Chem Rev 95:2457–2483

    Article  CAS  Google Scholar 

  2. Cui X, Burgess K (2005) Chem Rev 105:3272–3296

    Article  CAS  Google Scholar 

  3. Seregin IV, Gevorgyan V (2007) Chem Soc Rev 36:1173–1193

    Article  CAS  Google Scholar 

  4. Negishi E (2007) Bull Chem Soc Jpn 80:233–257

    Article  CAS  Google Scholar 

  5. Bernini R, Fabrizi G, Sferrazza A, Cacchi S (2009) Angew Chem Int Ed 48:8078–8081

    Article  CAS  Google Scholar 

  6. Hein JE, Tripp JC, Krasnova LB, Sharpless KB, Fokin VV (2009) Angew Chem Int Ed 48:8018–8021

    Article  CAS  Google Scholar 

  7. Das JP, Chechik H, Marek I (2009) Nat Chem 1:128–132

    Article  CAS  Google Scholar 

  8. Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV (2005) J Am Chem Soc 127:210–216

    Article  CAS  Google Scholar 

  9. Cantillo D, Ávalos M, Babiano R, Cintas P, Jiménez JL, Palacios JC (2011) Org Biomol Chem 9:2952–2958

    Article  CAS  Google Scholar 

  10. Sousa SF, Fernandes PA, Ramos MJ (2007) J Phys Chem A 111:10439–10452

    Article  CAS  Google Scholar 

  11. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  12. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  13. Hertwig RH, Koch W (1995) J Comput Chem 16:576–585

    Article  CAS  Google Scholar 

  14. Perdew JP (1991) Electronic Structure of Solids ‘91. In: Ziesche P, Eschrig H (eds). Akademie, Berlin. 17: 11–20

  15. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  16. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) J Chem Phys 109:6264–6271

    Article  CAS  Google Scholar 

  17. Wilson PJ, Bradley TJ, Tozer DJ (2001) J Chem Phys 115:9233–9242

    Article  CAS  Google Scholar 

  18. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  19. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  20. Xu X, Zhang Q, Muller RP, Goddard WA (2005) J Chem Phys 122:014105

    Article  Google Scholar 

  21. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Article  Google Scholar 

  22. Staroverov VN, Scuseria GE, Tao JM, Perdew JP (2004) J Chem Phys 120:6898–6911

    Article  Google Scholar 

  23. Perdew JP, Ruzsinszky A, Tao J, Csonka GIG, Scuseria GE (2007) Phys Rev A 76:042506

    Article  Google Scholar 

  24. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  25. Staroverov VN, Scuseria GE, Tao JM, Perdew JP (2003) J Chem Phys 119:12129–12137

    Article  CAS  Google Scholar 

  26. Zhao Y, Truhlar DG (2007) Theor Chem Acc 120:215–241

    Article  Google Scholar 

  27. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126–13130

    Article  CAS  Google Scholar 

  28. Baker J, Kessi A, Delley B (1996) J Chem Phys 105:192–212

    Article  CAS  Google Scholar 

  29. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  30. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  31. Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Can J Chem 70:612–630

    Article  CAS  Google Scholar 

  32. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  33. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  34. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  35. Swart M, Güell M, Luis JM, Solà M (2010) J Phys Chem A 114:7191–7197

    Article  CAS  Google Scholar 

  36. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  37. Glukhovtsev MN, Pross A, McGrath MP, Radom L (1995) J Chem Phys 103:1878–1885

    Article  CAS  Google Scholar 

  38. Balabanov NB, Peterson KA (2005) J Chem Phys 123:64107

    Article  Google Scholar 

  39. Neves AR, Fernandes PA, Ramos MJ (2011) J Chem Theory Comput 7:2059–2067

    Article  CAS  Google Scholar 

  40. Ribeiro AJM, Ramos MJ, Fernandes PA (2010) J Chem Theory Comput 6:2281–2292

    Article  CAS  Google Scholar 

  41. Silva PJ, Ramos MJ (2011) Comput Theor Chem 966:120–126

    Article  CAS  Google Scholar 

  42. Peterson KA, Shepler BC, Figgen D, Stoll H (2006) J Phys Chem A 110:13877–13883

    Article  CAS  Google Scholar 

  43. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  44. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  45. Čížek J (1966) J Chem Phys 45:4256–4267

    Article  Google Scholar 

  46. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  47. Olson RM, Bentz JL, Kendall RA, Schmidt MW, Gordon MS (2007) J Chem Theory Comput 3:1312–1328

    Article  Google Scholar 

  48. Bentz JL, Olson RM, Gordon MS, Schmidt MW, Kendall RA (2007) Comput Phys Commun 176:589–600

    Article  CAS  Google Scholar 

  49. Piecuch P, Kucharski SA, Kowalski K, Musiał M (2002) Comput Phys Commun 149:71–96

    Article  CAS  Google Scholar 

  50. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  51. Gordon M, Schmidt M (2005) Theory and application of computational chemistry: the first forty years. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds). Elsevier, Amsterdam, pp 1167 – 1189

  52. A. A. Granovsky PC GAMESS/Firefly version 7.1.G http://classic.chem.msu.su/gran/gamess/index.html.

  53. Thompson JS, Bradley AZ, Park K-H, Dobbs KD, Marshall W (2006) Organometallics 25:2712–2714

    Article  CAS  Google Scholar 

  54. Dias HVR, Flores JA, Wu J, Kroll P (2009) J Am Chem Soc 131:11249–11255

    Article  CAS  Google Scholar 

  55. Brás NF, Perez MAS, Fernandes PA, Silva PJ, Ramos MJ (2011) J Chem Theory Comput 7:3898–3908

    Article  Google Scholar 

  56. Ke Z, Cundari TR (2010) Organometallics 29:821–834

    Article  CAS  Google Scholar 

  57. Ge Y, Gordon MS, Piecuch P, Włoch M, Gour JR (2008) J Phys Chem A 112:11873–11884

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research at REQUIMTE is supported by Fundação para a Ciência e a Tecnologia through grant no. PEst-C/EQB/LA0006/2011. This work has been financed by FEDER through Programa Operacional Factores de Competitividade – COMPETE and by Portuguese Funds through FCT – Fundação para a Ciência e a Tecnologia under project PTDC/QUI-QUI/111288/2009. This work has also been supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (Grant No. DE-FG02-01ER15228; P.P.). Useful discussions with Professor Wei Li and Mr. Jared A. Hansen are gratefully appreciated, too.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Geometries and energies of every molecule optimized with each density functional and with MP2. (DOC 1184 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardo, C.E.P., Bauman, N.P., Piecuch, P. et al. Evaluation of density functional methods on the geometric and energetic descriptions of species involved in Cu+-promoted catalysis. J Mol Model 19, 5457–5467 (2013). https://doi.org/10.1007/s00894-013-2045-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2045-z

Keywords

Navigation