Skip to main content
Log in

Performance of recent density functionals to discriminate between olefin and nitrogen binding to palladium

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In the last decades, density functional theory has become unavoidable in theoretical studies of organometallic chemistry. Most of the recent functionals contain many parameters that are adjusted using carefully chosen reaction sets. However, these sets only contain a few entries involving late transition metal reaction, so that choosing a functional for such a study is difficult. In this work, the theoretical description of the oxidative addition of \(\hbox {Pd}(\hbox {PH}_3)_2\) to 2-iodo-allyl-aniline was chosen as a representative reaction of palladium. The competitive binding of the palladium to the alkene or the nitrogen atom was used to assess the accuracy of ab initio methods (MP2, MP3, MP2.5, SCS-MP2, SCS-MP3) and 56 functionals ranging from local density approximation to the costly double-hybrid approaches (such as B2PLYP), against a CCSD(T)/CBS reference value. Model systems \([(\hbox {PH}_3)_2\hbox {ClPd}(\hbox {NH}_3)]^{+}\) and \([(\hbox {PH}_3)_2\hbox {ClPd}(\hbox {H}_2\hbox {C}=\hbox {CH}_2)]^{+}\) were first considered: all functionals correctly predict that the azane complex is the most stable. However, some functionals overestimate its stability compared to the alkene complex. This is amplified in the 2-iodo-allyl-aniline study: SCS-MP3, B2PLYP as well as BP86, most of the meta-GGA (generalized gradient approximation), hybrid GGAs and hybrid meta-GGAs are predicting that oxidative addition proceeds directly. On the contrary, many functionals, among which B3LYP, M06-2X and most range-separated methods, wrongly predict that palladium first binds to the nitrogen atom before proceeding to the olefin insertion. Resorting to these functionals to study inorganic reactions with palladium might thus result in predicting wrong mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. It is worth noting that, according to our ISI Web of Science analysis, the BP86 functional is used in 8 % of the articles dealing with late TM but only to 2 % of the articles resorting to DFT in general.

  2. The name of each functional used in this work was searched in journal titles and abstracts from ISI Web of Science (December 27, 2013) for articles published during the 2008–2013 period. According to these data, B3LYP still represents more than 50 % of the references. This remains true even if the search is limited to articles dealing with late transition metals only.

  3. Beware that this corresponds to: \(0.5 E_X^{HF} + 0.5 E_X^{LSDA} + E_C^{LYP}\).

  4. This corresponds to: \( 0.5 E_X^{HF} + 0.5 E_X^{LSDA} + 0.5 \Delta E_X^{B88} + E_C^{LYP}\).

References

  1. Dedieu A (2000) Chem Rev 100(2):543. doi:10.1021/cr980407a

    CAS  Google Scholar 

  2. Ziegler T, Autschbach J (2005) Chem Rev 105(6):2695. doi:10.1021/cr0307188

    CAS  Google Scholar 

  3. Balcells D, Clot E, Eisenstein O (2010) Chem Rev 110(2):749. doi:10.1021/cr900315k

    CAS  Google Scholar 

  4. García-Melchor M, Braga AAC, Lledós A, Ujaque G, Maseras F (2013) Acc Chem Res 46(11):2626. doi:10.1021/ar400080r

    Google Scholar 

  5. Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11(46):10757. doi:10.1039/b907148b

    CAS  Google Scholar 

  6. Tsuji J (2005) Palladium reagents and catalysts. Wiley, New York. doi:10.1002/0470021209

  7. Becke AD (1988) Phys Rev A 38:3098

    CAS  Google Scholar 

  8. Perdew JP (1986) Phys Rev B 33(12):8822

    Google Scholar 

  9. Deubel DV, Ziegler T (2002) Organometallics 21(8):1603. doi:10.1021/om010662c

    CAS  Google Scholar 

  10. Deubel DV, Ziegler T (2002) Organometallics 21(21):4432. doi:10.1021/om0202975

    CAS  Google Scholar 

  11. Peverati R, Truhlar DG (2012) Phys Chem Chem Phys 14(38):13171. doi:10.1039/c2cp42025b

    CAS  Google Scholar 

  12. Heck RF, Nolley JP (1972) J Org Chem 37(14):2320. doi:10.1021/jo00979a024

    CAS  Google Scholar 

  13. Mizoroki T, Mori K, Ozaki A (1971) Bull Chem Soc Jpn 44(2):581

    CAS  Google Scholar 

  14. Yamamura M, Moritani I, Murahashi SI (1975) J Organomet Chem 91(2):C39. doi:10.1016/S0022-328X(00)89636-9

    CAS  Google Scholar 

  15. King AO, Okukado N, Negishi EI (1977) J Chem Soc Chem Commun 19:683. doi:10.1039/C39770000683

  16. Milstein D, Stille JK (1978) J Am Chem Soc 100(11):3636. doi:10.1021/ja00479a077

    CAS  Google Scholar 

  17. Miyaura N, Suzuki A (1979) J Chem Soc Chem Commun 19:866. doi:10.1039/C39790000866

  18. Johnson LK, Killian CM, Brookhart M (1995) J Am Chem Soc 117(23):6414. doi:10.1021/ja00128a054

    CAS  Google Scholar 

  19. Ittel SD, Johnson LK, Brookhart M (2000) Chem Rev 100(4):1169. doi:10.1021/cr9804644

    CAS  Google Scholar 

  20. Mecking S (2000) Coord Chem Rev 203(1):325. doi:10.1016/S0010-8545(99)00229-5

    CAS  Google Scholar 

  21. Fernández I, Solé D, Sierra MA (2011) J Org Chem 76(6):1592. doi:10.1021/jo1020954

    Google Scholar 

  22. Solé D, Mariani F, Fernández I, Sierra MA (2012) J Org Chem 77(22):10272. doi:10.1021/jo301924e

    Google Scholar 

  23. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98(45):11623. doi:10.1021/j100096a001

    CAS  Google Scholar 

  24. Chéron N, Jacquemin D, Fleurat-Lessard P (2012) Phys Chem Chem Phys 14(19):7170. doi:10.1039/C2CP40438A

    Google Scholar 

  25. Gadzhiev OB, Ignatov SK, Razuvaev AG, Masunov AE (2009) J Phys Chem A 113(32):9092. doi:10.1021/jp900484s

    CAS  Google Scholar 

  26. Gadzhiev OB, Ignatov SK, Gangopadhyay S, Masunov AE, Petrov AI (2011) J Chem Theory Comput 7(7):2021. doi:10.1021/ct100754m

    CAS  Google Scholar 

  27. Gadzhiev OB, de la Rosa LAG, Meléndez-Bustamante FJ, de Parrodi CA, Abdallah HH, Petrov AI, Scior T (2012) J Phys Org Chem 25(11):971. doi:10.1002/poc.2985

    CAS  Google Scholar 

  28. Lu L, Hu H, Hou H, Wang B (2013) Comput Theor Chem 1015:64. doi:10.1016/j.comptc.2013.04.009

    CAS  Google Scholar 

  29. Sousa SF, Fernandes PA, Ramos MJ (2007) J Phys Chem A 111(42):10439. doi:10.1021/jp0734474

    CAS  Google Scholar 

  30. Lai W, Yao J, Shaik S, Chen H (2012) J Chem Theory Comput 8(9):2991. doi:10.1021/ct3005936

    CAS  Google Scholar 

  31. Ikeda A, Nakao Y, Sato H, Sakaki S (2007) J Phys Chem A 111(30):7124. doi:10.1021/jp0708648

    CAS  Google Scholar 

  32. Averkiev BB, Zhao Y, Truhlar DG (2010) J Mol Cat A 324(1–2):80. doi:10.1016/j.molcata.2010.03.016

    CAS  Google Scholar 

  33. Steinmetz M, Grimme S (2013) ChemistryOpen 2(3):115. doi:10.1002/open.201300012

    CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, AustinAJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, FoxDJ (2009) Gaussian 09 Revision D.01. Gaussian Inc., Wallingford

  35. Møller C, Plesset MS (1934) Phys Rev 46:618

  36. Sedlak R, Riley KE, Rězáč J, Pitoňák M, Hobza P (2013) ChemPhysChem 14(4):698. doi:10.1002/cphc.201200850

    CAS  Google Scholar 

  37. Antony J, Grimme S (2007) J Phys Chem A 111(22):4862. doi:10.1021/jp070589p

    CAS  Google Scholar 

  38. Takatani T, Sherrill CD (2007) Phys Chem Chem Phys 9(46):6106. doi:10.1039/B709669K

    CAS  Google Scholar 

  39. Grimme S (2003) J Comput Chem 24(13):1529. doi:10.1002/jcc.10320

    CAS  Google Scholar 

  40. Purvis GD III, Bartlett RJ (1982) J Chem Phys 76:1910

    CAS  Google Scholar 

  41. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479. doi:10.1016/S0009-2614(89)87395-6

    CAS  Google Scholar 

  42. Hohenberg P, Kohn W (1964) Phys Rev 136(3B):B864. doi:10.1103/PhysRev.136.B864

    Google Scholar 

  43. Vosko SJ, Wilk L, Nusair M (1980) Can J Phys 58:1200

    CAS  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    CAS  Google Scholar 

  45. Handy NC, Cohen AJ (2001) Mol Phys 99:403

    CAS  Google Scholar 

  46. Lee C, Yand W, Parr R (1988) Phys Rev B 37:785

    CAS  Google Scholar 

  47. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Google Scholar 

  48. Boese AD, Handy NC (2001) J Chem Phys 114(13):5497. doi:10.1063/1.1347371

    CAS  Google Scholar 

  49. Peverati R, Zhao Y, Truhlar DG (2011) J Phys Chem Lett 2(16):1991. doi:10.1021/jz200616w

    CAS  Google Scholar 

  50. Peverati R, Truhlar DG (2012) J Chem Theory Comput 8(7):2310. doi:10.1021/ct3002656

    CAS  Google Scholar 

  51. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Google Scholar 

  52. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Google Scholar 

  53. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    CAS  Google Scholar 

  54. Peverati R, Truhlar DG (2012) J Phys Chem Lett 3(1):117. doi:10.1021/jz201525m

    CAS  Google Scholar 

  55. Cohen AJ, Handy NC (2001) Mol Phys 99:607

    CAS  Google Scholar 

  56. Boese AD, Handy NC (2002) J Chem Phys 116:9559

    CAS  Google Scholar 

  57. Becke AD (1993) J Chem Phys 98:5648

    CAS  Google Scholar 

  58. Adamo C, Barone V (1998) J Chem Phys 108:664

    CAS  Google Scholar 

  59. Hamprecht FA, Cohen A, Tozer DJ, Handy NC (1998) J Chem Phys 109:6264

    CAS  Google Scholar 

  60. Wilson PJ, Bradley TJ, Tozer DJ (2001) J Chem Phys 115:9233

    CAS  Google Scholar 

  61. Xu X, Goddard WA III (2004) Proc Natl Acad Sci USA 101:2673

  62. Becke AD (1997) J Chem Phys 107:8554

    CAS  Google Scholar 

  63. Schmider HL, Becke AD (1998) J Chem Phys 108:9624

    CAS  Google Scholar 

  64. Austin A, Petersson GA, Frisch MJ, Dobek FJ, Scalmani G, Throssell K (2012) J Chem Theory Comput 8(12):4989. doi:10.1021/ct300778e

    CAS  Google Scholar 

  65. Adamo C, Barone V (1999) J Chem Phys 110:6158

    CAS  Google Scholar 

  66. Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) J Phys Chem A 104(21):4811. doi:10.1021/jp000497z

  67. Peverati R, Truhlar DG (2011) J Chem Phys 135(19):191102. doi:10.1063/1.3663871

    Google Scholar 

  68. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    CAS  Google Scholar 

  69. Becke AD (1996) J Chem Phys 104:1040

    CAS  Google Scholar 

  70. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908

    CAS  Google Scholar 

  71. Boese AD, Martin JML (2004) J Chem Phys 121:3405

    CAS  Google Scholar 

  72. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126

    CAS  Google Scholar 

  73. Chai JD, Head-Gordon M (2008) J Chem Phys 128:084106

    Google Scholar 

  74. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    CAS  Google Scholar 

  75. Peverati R, Truhlar DG (2011) J Phys Chem Lett 2(21):2810. doi:10.1021/jz201170d

    CAS  Google Scholar 

  76. Henderson TM, Izmaylov AF, Scuseria GE, Savin A (2008) J Chem Theory Comput 4(8):1254. doi:10.1021/ct800149y

    CAS  Google Scholar 

  77. Henderson TM, Izmaylov AF, Scalmani G, Scuseria GE (2009) J Chem Phys 131:044108. doi:10.1063/1.3185673

    Google Scholar 

  78. Peverati R, Truhlar DG (2012) Phys Chem Chem Phys 14(47):16187. doi:10.1039/c2cp42576a

    CAS  Google Scholar 

  79. Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51

    CAS  Google Scholar 

  80. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540

    CAS  Google Scholar 

  81. Grimme S (2006) J Chem Phys 124:034108. doi:10.1063/1.2148954

    Google Scholar 

  82. Schwabe T, Grimme S (2006) Phys Chem Chem Phys 8(38):4398. doi:10.1039/B608478H

    CAS  Google Scholar 

  83. Karton A, Tarnopolsky A, Lamère JF, Schatz GC, Martin JML (2008) J Phys Chem A 112(50):12868. doi:10.1021/jp801805p

    CAS  Google Scholar 

  84. Grimme S (2006) J Comput Chem 27:1787

    CAS  Google Scholar 

  85. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32(7):1456. doi:10.1002/jcc.21759

    CAS  Google Scholar 

  86. Goerigk L, Grimme S (2011) J Chem Theory Comput 7(2):291. doi:10.1021/ct100466k

    CAS  Google Scholar 

  87. Peterson K, Figgen D, Dolg M, Stoll H (2007) J Chem Phys 126:124101

    Google Scholar 

  88. Peterson KA, Shepler BC, Figgen D, Stoll H (2006) J Phys Chem A 110:13877

    CAS  Google Scholar 

  89. Hay P, Wadt W (1985) J Chem Phys 82:299

    CAS  Google Scholar 

  90. Ehlers A, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler K, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208(1–2):111. doi:10.1016/0009-2614(93)80086-5

    CAS  Google Scholar 

  91. Roy L, Hay P, Martin R (2008) J Chem Theory Comput 4:1029

    CAS  Google Scholar 

  92. Check C, Faust T, Bailey J, Wright B, Gilbert T, Sunderlin L (2001) J Phys Chem A 105:8111

    CAS  Google Scholar 

  93. Feller D (1996) J Comp Chem 17:1571

    CAS  Google Scholar 

  94. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045. doi:10.1021/ci600510j

    CAS  Google Scholar 

  95. de Jong GT, Solà M, Visscher L, Bickelhaupt FM (2004) J Chem Phys 121(20):9982. doi:10.1063/1.1792151

    Google Scholar 

  96. de Jong GT, Bickelhaupt FM (2006) J Chem Theory Comput 2(2):322. doi:10.1021/ct050254g

    Google Scholar 

  97. Boys S, Bernardi F (1970) Mol Phys 19:553

    CAS  Google Scholar 

  98. Halkier A, Klopper W, Helgaker T, Jorgensen P, Taylor P (1999) J Chem Phys 111:9157

    CAS  Google Scholar 

  99. Mentel ŁM, Baerends EJ (2014) J Chem Theory Comput 10(1):252. doi:10.1021/ct400990u

    CAS  Google Scholar 

  100. Jurečka P, Hobza P (2002) Chem Phys Lett 365:89

    Google Scholar 

  101. Tarnopolsky A, Karton A, Sertchook R, Vuzman D, Martin JML (2008) J Phys Chem A 112(1):3. doi:10.1021/jp710179r

    CAS  Google Scholar 

  102. Gráfová L, Pitoňák M, Rězáč J, Hobza P (2010) J Chem Theory Comput 6(8):2365. doi:10.1021/ct1002253

    Google Scholar 

  103. Bento AP, Solaca M, Bickelhaupt FM (2008) J Chem Theory Comput 4:929

    CAS  Google Scholar 

  104. Perdew JP, Ruzsinszky A, Constantin LA, Sun J, Csonka GI (2009) J Chem Theory Comput 5:902

    CAS  Google Scholar 

  105. Garrec J, Sautet P, Fleurat-Lessard P (2011) J Phys Chem B 115(26):8545. doi:10.1021/jp200565w

    CAS  Google Scholar 

  106. Seth M, Ziegler T, Steinmetz M, Grimme S (2013) J Chem Theory Comput 9(5):2286. doi:10.1021/ct301112m

    CAS  Google Scholar 

  107. Burke K, Perdew JP, Ernzerhof M (1997) Int J Quant Chem 61(2):287. doi:10.1002/(SICI)1097-461X(1997)61:2<287::AID-QUA11>3.0.CO;2-9

  108. Shamov GA, Schreckenbach G, Budzelaar PHM (2010) J Chem Theory Comput 6(11):3442. doi:10.1021/ct100389d

    CAS  Google Scholar 

  109. Solé D, Vallverdú L, Solans X, Font-Bardía M, Bonjoch J (2003) J Am Chem Soc 125(6):1587. doi:10.1021/ja029114w

    Google Scholar 

  110. Solé D, Vallverdú L, Solans X, Font-Bardia M, Bonjoch J (2004) Organometallics 23(6):1438. doi:10.1021/om034270c

    Google Scholar 

  111. Quintal MM, Karton A, Iron MA, Boese AD, Martin JML (2006) J Phys Chem A 110(2):709. doi:10.1021/jp054449w

    CAS  Google Scholar 

Download references

Acknowledgments

This work was granted access to the HPC resources of IDRIS under the allocations 2012-070609 and 2013-070609 made by GENCI (Grand Équipement National de Calcul Intensif). This work has been achieved partially thanks to the resources of PSMN (Pôle Scientifique de Modélisation Numérique).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Fleurat-Lessard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 345 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grüber, R., Fleurat-Lessard, P. Performance of recent density functionals to discriminate between olefin and nitrogen binding to palladium. Theor Chem Acc 133, 1533 (2014). https://doi.org/10.1007/s00214-014-1533-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1533-2

Keywords

Navigation