Skip to main content
Log in

Changes in ligating abilities of the singlet and triplet states of normal, abnormal and remote N-heterocyclic carbenes depending on their aromaticities

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Quantum chemical calculations at B3LYP/aug-cc-pVTZ level about singlet N-heterocyclic carbene (NHC) ligands, imidazol-2-ylidene, imidazol-4-ylidene, pyrazol-3-ylidene and pyrazol-4-ylidene, and their protonated analogues show that they are considerably aromatic except for pyrazol-3-ylidene. This result is experimentally verified by approximately five thousand NHC transition metal complexes retrieved from the Cambridge Structural Database (CSD). CSD search discloses that NHCs can participate in π-stacking interactions, albeit scarce. Geometry-based HOMA and electronic aromaticity index FLU rather than NICS provide a satisfactory description of the bonding situations in NHC ligands. Singlet state of the normal NHC has electron-deficient aromaticity as compared to those of the abnormal and remote NHCs. Depending on the transition from the singlet to triplet state, NHCs become electron-deficient ligands except for remote NHC. Computational studies regarding electronic nature of free NHC ligands show that the π-electronic population of the formally vacant pπ orbital on the carbene atoms in abnormal and remote NHC is occurred as a result of the aromaticity of NHCs, not as a result of the direct electron donation from LP-orbitals of N atoms to carbene atom according to putative push-pull effect used in understanding the electronic stabilization of normal NHC. Increase in the aromaticity raises σ-donating ability of both imidazol- and pyrazol-based NHC ligands. Free abnormal and remote NHC ligands have higher σ-donation ability than normal NHC ligands. The lack of σ-donating ability of normal NHC is compensated by its relatively high π-accepting ability, whereas π-back donation abilities of abnormal and remote NHCs are prohibited by their almost fully occupied π-orbitals. Aromaticities of the triplet NHC ligands are higher than that of the lowest-lying triplet state of benzene. Increase in the aromaticity of NHC ligands decreases van der Waals shortening in TM-NHC bonds mainly due to diminishing dative character of these bonds.

Singlet and triplet states of Arduengo type (normal) NHC showing their electron deficient aromatic characters

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arduengo AJ III, Harlow RL, Kline MJ (1991) Am Chem Soc 113:361–363

    Article  CAS  Google Scholar 

  2. Herrmann WA, Köcher C (1997) Angew Chem Int Ed Engl 36:2162–2187

    Article  CAS  Google Scholar 

  3. Arduengo AJ III (1999) Acc Chem Res 32:913–921

    Article  CAS  Google Scholar 

  4. Hahn FE, Jahnke MC (2008) Angew Chem Int Ed 47:3122–3172

    Article  CAS  Google Scholar 

  5. Öfele K, Tosh E, Taubmann C, Herrmann WA (2009) Chem Rev 109:3408–3444

    Article  Google Scholar 

  6. Wang Y, Robinson GH (2011) Inorg Chem 50:12326–12337

    Article  CAS  Google Scholar 

  7. Al-Rafia SMI, Malcolm AC, Liew SK, Ferguson MJ, Rivard E (2011) J Am Chem Soc 133:777–779

    Article  CAS  Google Scholar 

  8. Curran DP, Solovyev A, Makhlouf Brahmi M, Fensterbank L, Malacria M, Lacote E (2011) Angew Chem Int Ed 50:10294–10317

    Article  CAS  Google Scholar 

  9. Wang Y, Robinson GH (2012) Dalton Trans 41:337–345

    Article  CAS  Google Scholar 

  10. Kinjo R, Donnadieu B, Celik MA, Frenking G, Bertrand G (2011) Science 333:610–613

    Article  CAS  Google Scholar 

  11. Martin D, Soleilhavoup M, Bertrand G (2011) Chem Sci 2:389–399

    Article  CAS  Google Scholar 

  12. Schuster O, Yang L, Raubenheimer HG, Albrecht M (2009) Chem Rev 109:3445–3478

    Article  CAS  Google Scholar 

  13. Nolan SP (2011) Acc Chem Res 44:91–100

    Article  CAS  Google Scholar 

  14. Correa A, Nolan SP, Cavallo L (2011) Top Curr Chem 302:131–155

    CAS  Google Scholar 

  15. Valente C, Calimsiz S, Hoi KH, Mallik D, Sayah M, Organ MG (2012) Angew Chem Int Ed 51:3314–3332

    Article  CAS  Google Scholar 

  16. Marion N, Diez-Gonzalez S, Nolan SP (2007) Angew Chem Int Ed 46:2988–3000

    Article  CAS  Google Scholar 

  17. Biju AT, Kuhl N, Glorius F (2011) Acc Chem Res 44:1182–1195

    Article  CAS  Google Scholar 

  18. Bugaut X, Glorius F (2012) Chem Soc Rev 41:3511–3522

    Article  CAS  Google Scholar 

  19. Heinemann C, Müller T, Apeloig Y, Schwarz H (1996) J Am Chem Soc 118:2023–2038

    Article  CAS  Google Scholar 

  20. Tomioka H (1997) Acc Chem Res 30:315–321

    Article  CAS  Google Scholar 

  21. Hirai K, Itoh T, Tomioka H (2009) Chem Rev 109:3275–3332

    Article  CAS  Google Scholar 

  22. Boehme C, Frenking G (1996) J Am Chem Soc 118:2039–2046

    Article  CAS  Google Scholar 

  23. Lehmann JF, Urquhart SG, Ennis LE, Hitchcock AP, Hatano K, Gupta S, Denk MK (1999) Organometallics 18:1862–1872

    Article  CAS  Google Scholar 

  24. Frison G, Sevin A (1999) J Phys Chem A 103:10998–11003

    Article  CAS  Google Scholar 

  25. Diez-Gonzalez S, Nolan SP (2007) Coord Chem Rev 251:874–883

    Article  CAS  Google Scholar 

  26. Muller P (1994) Pure Appl Chem 66:1077–1184

    Article  Google Scholar 

  27. Leites LA, Magdanurov GI, Bukalov SS, Nolan SP, Scott NM, West R (2007) Mendeleev Commun 17:92–94

    Article  CAS  Google Scholar 

  28. Arnold PL, Pearson S (2007) Coord Chem Rev 251:596–609

    Article  CAS  Google Scholar 

  29. Huynh HV, Frison G (2013) J Org Chem 78:328–338

    Article  CAS  Google Scholar 

  30. Aldeco-Perez E, Rosenthal AJ, Donnadieu B, Parameswaran P, Frenking G, Bertrand G (2009) Science 326:556–559

    Article  CAS  Google Scholar 

  31. Lazzeretti P (2004) Phys Chem Chem Phys 6:217–223

    Article  CAS  Google Scholar 

  32. Gomes JANF, Mallion RB (2001) Chem Rev 101:1349–1383

    Article  CAS  Google Scholar 

  33. Bultinck P, Rafat M, Ponec R, van Gheluwe B, Carbo-Dorca R, Popelier P (2006) J Phys Chem A 110:7642–7648

    Article  CAS  Google Scholar 

  34. Feixas F, Matito E, Poater J, Solà M (2008) J Comput Chem 29:1543–1554

    Article  CAS  Google Scholar 

  35. Poater J, Fradera X, Duran M, Solà M (2003) Chem Eur J 9:400–406

    Article  CAS  Google Scholar 

  36. Bultinck P, Ponec R, Van Damme SJ (2005) Phys Org Chem 18:706–718

    Article  CAS  Google Scholar 

  37. Matito E, Duran M, Solà M (2005) J Chem Phys 122:014109–8

    Article  Google Scholar 

  38. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  39. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C01. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  41. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  42. Woon DE, Dunning TH (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  43. Glendening ED, Landis CR, Weinhold F (2012) WIREs Comput Mol Sci 2:1–42

    Article  CAS  Google Scholar 

  44. Bader RFW (1994) Atoms in Molecules: A Quantum Theory. Oxford University Press, USA

    Google Scholar 

  45. Keith TA (2012) AIMAll (Version 12.09.23, Professional), TK Gristmill Software, Overland Park KS, USA, (aim.tkgristmill.com)

  46. Mayer I (2007) J Comput Chem 28:204–221

    Article  CAS  Google Scholar 

  47. Gorelsky SI, AOMix: Program for Molecular Orbital Analysis, http://www.sg-chem.net/, University of Ottawa, version 6.5, 2011

  48. Krygowski TM, Cyrański MK (2001) Chem Rev 101:1385–1419

    Article  CAS  Google Scholar 

  49. Chen ZF, King R (2005) Chem Rev 105:3613–3642

    Article  CAS  Google Scholar 

  50. Cyrański MK (2005) Chem Rev 105:3773–3811

    Article  Google Scholar 

  51. Ciesielski A, Krygowski TM, Cyrański MK, Dobrowolski MA, Balaban AT (2009) J Chem Inf Model 49:369–376

    Article  CAS  Google Scholar 

  52. Krygowski TM (1993) J Chem Inf Comput Sci 33:70–78

    CAS  Google Scholar 

  53. Frizzo CP, Martins MAP (2012) Struct Chem 23:375–380

    Article  CAS  Google Scholar 

  54. Matito E, Poater J, Duran M, Solà M (2005) J Mol Struc Theo chem 727:165–171

    Article  CAS  Google Scholar 

  55. Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R (2002) Acta Crystallogr B58:389–397

    CAS  Google Scholar 

  56. Groom CR, Allen FH (2011) WIREs Comput Mol Sci 1:368–376

    Article  CAS  Google Scholar 

  57. Holtzl T, Ngan VT, Nguyen MT, Veszprémi T (2009) Chem Phys Lett 481:54–57

    Article  Google Scholar 

  58. Tonner R, Heydenrych G, Frenking G (2007) Chem Asian J 2:1555–1567

    Article  CAS  Google Scholar 

  59. Parr RG, Von Szentpály L, Liu SB (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  60. Minkin VI (1999) Pure Appl Chem 71:1919–1981

    Article  CAS  Google Scholar 

  61. Feixas F, Vandenbussche J, Bultinck P, Matito E, Solà M (2011) Phys Chem Chem Phys 13:20690–20703

    Article  CAS  Google Scholar 

  62. De Proft F, Geerlings P (2001) Chem Rev 101:1451–1464

    Article  Google Scholar 

  63. Torrent-Sucarrat M, Luis JM, Duran M, Solà M (2002) J Chem Phys 117:10561–10570

    Article  CAS  Google Scholar 

  64. Pearson RG (2005) J Chem Sci 117:369–377

    Article  CAS  Google Scholar 

  65. Jacobsen H, Correa A, Poater A, Costabile C, Cavallo L (2009) Coord Chem Rev 253:687–703

    Article  CAS  Google Scholar 

  66. Appelhans LN, Zuccaccia D, Kovacevic A, Chianese AR, Miecznikowski JR, Macchioni A, Clot E, Eisenstein O, Crabtree RH (2005) J Am Chem Soc 127:16299–16311

    Article  CAS  Google Scholar 

  67. Crabtree RH (2013) Coord Chem Rev 257:755–766

    Article  CAS  Google Scholar 

  68. Iglesias M, Albrecht M (2010) Dalton Trans 39:5213–5215

    Article  CAS  Google Scholar 

  69. Albrecht M (2009) CHIMIA 63:105–110

    Article  CAS  Google Scholar 

  70. Arduengo AJ, Dias HVR, Dixon DA, Harlow RL, Klooster WT, Koetzle TF (1994) J Am Chem Soc 116:6812–6822

    Article  CAS  Google Scholar 

  71. Krygowski TM, Palusiak M, Plonka A, Zachara-Horeglad JE (2007) J Phys Org Chem 20:297–306

    Article  CAS  Google Scholar 

  72. Frenking G, Solà M, Vyboishchikov SF (2005) J Organomet Chem 690:6178–6204

    Article  CAS  Google Scholar 

  73. Heydenrych G, von Hopffgarten M, Stander E, Schuster O, Raubenheimer HG, Frenking G (2009) Eur J Inorg Chem 1892–1904

  74. Parr RG, Chattaraj PK (1991) J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

  75. Heckenroth M, Neels A, Garnier MG, Aebi P, Ehlers AW, Albrecht M (2009) Chem Eur J 15:9375–9386

    Article  CAS  Google Scholar 

  76. Cordero B, Gómez V, Platero-Prats AE, Revés M, Echeverría J, Cremades E, Barragán F, Alvarez S (2008) Dalton Trans 21:2832–2838

    Article  Google Scholar 

  77. Baba E, Cundari TR, Firkin I (2005) Inorg Chim Acta 358:2867–2875

    Article  CAS  Google Scholar 

  78. Fernandez I, Dyker CA, DeHope A, Donnadieu B, Frenking G, Bertrand G (2009) J Am Chem Soc 131:11875–11881

    Article  CAS  Google Scholar 

  79. Bourissou D, Guerret O, Gabbai FP, Bertrand G (2000) Chem Rev 100:39–91

    Article  CAS  Google Scholar 

  80. Martinez CR, Iverson BL (2012) Chem Sci 3:2191–2201

    Article  CAS  Google Scholar 

  81. Janiak C (2000) J Chem Soc Dalton Trans 21:3885–3896

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by TÜBİTAK (The Scientific and Technological Research Council of Turkey) under the allocation 112T636.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hande Karabıyık.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevinçek, R., Karabıyık, H. & Karabıyık, H. Changes in ligating abilities of the singlet and triplet states of normal, abnormal and remote N-heterocyclic carbenes depending on their aromaticities. J Mol Model 19, 5327–5341 (2013). https://doi.org/10.1007/s00894-013-2027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2027-1

Keywords

Navigation