Skip to main content
Log in

Structure-property relationships for three indoline dyes used in dye-sensitized solar cells: TDDFT study of visible absorption and photoinduced charge-transfer processes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The electronic structures of three D-A-π-A indoline dyes (WS-2, WS-6, and WS-11) used in dye-sensitized solar cells (DSSCs) were studied by performing quantum chemistry calculations. The coplanarity of the A-π-A segment and distinct noncoplanarity of the indoline donor part of each dye were confirmed by checking the calculated geometric parameters. The relationships between molecular modifications and the optical properties of the dyes were derived in terms of the partial density of states, absorption spectrum, frontier molecular orbital, and excited-state charge transfer. 3D real-space analysis of the transition density (TD) and charge difference density (CDD) was also performed to further investigate the excited-state features of the molecular systems, as they provide visualized physical pictures of the charge separation and transfer. It was found that modifying the alkyl chain of the bridge unit near the acceptor unit is an efficient way to decrease dye aggregation and improve DSSC efficiency. Inserting a hexylthiophene group next to the donor unit leads to a complicated molecular structure and a decrease in the charge-transfer ability of the system, which has an unfavorable impact on DSSC performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4
Fig. 5a–c

Similar content being viewed by others

References

  1. Kuang D, Uchida S, Humphry-Baker R, Zakeeruddin SM, Gratzel M (2008) Angew Chem Int Edit 47:1923–1927

    Article  CAS  Google Scholar 

  2. Mishra A, Fischer MKR, Bauerle P (2009) Angew Chem Int Edit 48:2474–2499

    Article  CAS  Google Scholar 

  3. Hwang S, Lee JH, Park C, Lee H, Kim C, Park C, Lee MH, Lee W, Park J, Kim K, Park NG, Kim C (2007) Chem Commun 4887–4889

  4. Chen CY, Wang MK, Li JY, Pootrakulchote N, Alibabaei L, Ngoc-le CH, Decoppet JD, Tsai JH, Gratzel C, Wu CG, Zakeeruddin SM, Gratzel M (2009) ACS Nano 3:3103–3109

    Article  CAS  Google Scholar 

  5. Gao FF, Wang Y, Shi D, Zhang J, Wang MK, Jing XY, Humphry-Baker R, Wang P, Zakeeruddin SM, Gratzel M (2008) J Am Chem Soc 130:10720–10728

    Article  CAS  Google Scholar 

  6. Nazeeruddin MK, Humphry-Baker R, Liska P, Gratzel M (2003) J Phys Chem B 107:8981–8987

    Article  CAS  Google Scholar 

  7. Wiberg J, Marinado T, Hagberg DP, Sun LC, Hagfeldt A, Albinsson B (2009) J Phys Chem C 113:3881–3886

    Article  CAS  Google Scholar 

  8. Marinado T, Nonomura K, Nissfolk J, Karlsson MK, Hagberg DP, Sun LC, Mori S, Hagfeldt A (2010) Langmuir 26:2592–2598

    Article  CAS  Google Scholar 

  9. Cao YM, Bai Y, Yu QJ, Cheng YM, Liu S, Shi D, Gao FF, Wang P (2009) J Phys Chem C 113:6290–6297

    Article  CAS  Google Scholar 

  10. De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK, Gratzel M (2007) J Am Chem Soc 129:14156–14157

    Article  Google Scholar 

  11. Imahori H, Matsubara Y, Iijima H, Umeyama T, Matano Y, Ito S, Niemi M, Tkachenko NV, Lemmetyinen H (2010) J Phys Chem C 114:10656–10665

    Article  CAS  Google Scholar 

  12. Hsieh CP, Lu HP, Chiu CL, Lee CW, Chuang SH, Mai CL, Yen WN, Hsu SJ, Diau EWG, Yeh CY (2010) J Mater Chem 20:1127–1134

    Article  CAS  Google Scholar 

  13. Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Gratzel M (2005) J Am Chem Soc 127:16835–16847

    Article  CAS  Google Scholar 

  14. Nazeeruddin MK, Bessho T, Cevey L, Ito S, Klein C, De Angelis F, Fantacci S, Comte P, Liska P, Imai H, Graetzel M (2007) J Photoch Photobio A 185:331–337

    Article  CAS  Google Scholar 

  15. Yella A, Lee HW, Tsao HN, Yi CY, Chandiran AK, Nazeeruddin MK, Diau EWG, Yeh CY, Zakeeruddin SM, Gratzel M (2011) Science 334:629–634

    Article  CAS  Google Scholar 

  16. Yum JH, Hagberg DP, Moon SJ, Karlsson KM, Marinado T, Sun LC, Hagfeldt A, Nazeeruddin MK, Gratzel M (2009) Angew Chem Int Edit 48:1576–1580

    CAS  Google Scholar 

  17. Zhang GL, Bai Y, Li RZ, Shi D, Wenger S, Zakeeruddin SM, Gratzel M, Wang P (2009) Energ Environ Sci 2:92–95

    Article  CAS  Google Scholar 

  18. Wang MK, Xu MF, Shi D, Li RZ, Gao FF, Zhang GL, Yi ZH, Humphry-Baker R, Wang P, Zakeeruddin SM, Gratzel M (2008) Adv Mater 20:4460–4463

    Article  CAS  Google Scholar 

  19. Li RZ, Lv XJ, Shi D, Zhou DF, Cheng YM, Zhang GL, Wang P (2009) J Phys Chem C 113:7469–7479

    Article  CAS  Google Scholar 

  20. Xu MF, Li RZ, Pootrakulchote N, Shi D, Guo J, Yi ZH, Zakeeruddin SM, Gratzel M, Wang P (2008) J Phys Chem C 112:19770–19776

    Article  CAS  Google Scholar 

  21. Li G, Jiang KJ, Li YF, Li SL, Yang LM (2008) J Phys Chem C 112:11591–11599

    Article  CAS  Google Scholar 

  22. Haid S, Marszalek M, Mishra A, Wielopolski M, Teuscher J, Moser JE, Humphry-Baker R, Zakeeruddin SM, Gratzel M, Bauerle P (2012) Adv Funct Mater 22:1291–1302

    Article  CAS  Google Scholar 

  23. Hagberg DP, Marinado T, Karlsson KM, Nonomura K, Qin P, Boschloo G, Brinck T, Hagfeldt A, Sun LC (2007) J Org Chem 72:9550–9556

    Article  CAS  Google Scholar 

  24. Zhang GL, Bala H, Cheng YM, Shi D, Lv XJ, Yu QJ, Wang P (2009) Chem Commun 2198–2200

  25. Lu HP, Tsai CY, Yen WN, Hsieh CP, Lee CW, Yeh CY, Diau EWG (2009) J Phys Chem C 113:20990–20997

    Article  CAS  Google Scholar 

  26. Sirohi R, Kim DH, Yu SC, Lee SH (2012) Dyes Pigments 92:1132–1137

    Article  CAS  Google Scholar 

  27. Nazeeruddin MK, Pechy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Gratzel M (2001) J Am Chem Soc 123:1613–1624

    Article  CAS  Google Scholar 

  28. Kay A, Gratzel M (1993) J Phys Chem 97:6272–6277

    Article  CAS  Google Scholar 

  29. Wang P, Zakeeruddin SM, Comte P, Charvet R, Humphry-Baker R, Gratzel M (2003) J Phys Chem B 107:14336–14341

    Article  CAS  Google Scholar 

  30. Hara K, Dan-Oh Y, Kasada C, Ohga Y, Shinpo A, Suga S, Sayama K, Arakawa H (2004) Langmuir 20:4205–4210

    Article  CAS  Google Scholar 

  31. Wu YZ, Zhu WH (2013) Chem Soc Rev 42:2039–2058

    Article  CAS  Google Scholar 

  32. Zhu WH, Wu YZ, Wang ST, Li WQ, Li X, Chen JA, Wang ZS, Tian H (2011) Adv Funct Mater 21:756–763

    Article  CAS  Google Scholar 

  33. Wu YZ, Zhang X, Li WQ, Wang ZS, Tian H, Zhu WH (2012) Adv Energy Mater 2:149–156

    Article  CAS  Google Scholar 

  34. Velusamy M, Thomas KRJ, Lin JT, Hsu YC, Ho KC (2005) Org Lett 7:1899–1902

    Article  CAS  Google Scholar 

  35. Hou JH, Chen HY, Zhang SQ, Li G, Yang Y (2008) J Am Chem Soc 130:16144–16145

    Article  CAS  Google Scholar 

  36. Kohn W, Sham LJ (1965) Phys Rev 140:1133–1138

    Article  Google Scholar 

  37. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  38. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  39. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  40. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  41. Binning RC, Curtiss LA (1990) J Comput Chem 11:1206–1216

    Article  CAS  Google Scholar 

  42. Wachters AJH (1970) J Chem Phys 52:1033–1036

    Article  CAS  Google Scholar 

  43. Hay PJ (1977) J Chem Phys 66:4377–4384

    Article  CAS  Google Scholar 

  44. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  45. Mclean AD, Chandler GS (1980) J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  46. Mcgrath MP, Radom L (1991) J Chem Phys 94:511–516

    Article  CAS  Google Scholar 

  47. Balanay MP, Kim DH (2011) Curr Appl Phys 11:109–116

    Article  Google Scholar 

  48. Liu CG, Guan W, Song P, Yan LK, Su ZM (2009) Inorg Chem 48:6548–6554

    Article  CAS  Google Scholar 

  49. Cohen HD, Roothaan CCJ (1965) J Chem Phys 43:S034–S039

    Google Scholar 

  50. Tsunekawa T, Yamaguchi K (1992) J Phys Chem 96:10268–10275

    Google Scholar 

  51. Champagne B, Jacquemin D, Andre JM, Kirtman B (1997) J Phys Chem A 101:3158–3165

    Article  CAS  Google Scholar 

  52. Kleinman DA (1962) Phys Rev 126:1977–1979

    Article  CAS  Google Scholar 

  53. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  54. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  55. Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  CAS  Google Scholar 

  56. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158

    Article  CAS  Google Scholar 

  57. Tomasi J, Mennucci B, Cances E (1999) J Mol Struc–Theochem 464:211–226

    Google Scholar 

  58. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839–845

    Article  Google Scholar 

  59. Sun MT, Liu LW, Ding Y, Xu HX (2007) J Chem Phys 127:084706

    Article  Google Scholar 

  60. Sun MT, Kjellberg P, Beenken WJD, Pullerits T (2006) Chem Phys 327:474–484

    Article  CAS  Google Scholar 

  61. Sun MT, Liu SS, Chen MD, Xu HX (2009) J Raman Spectrosc 40:137–143

    Article  CAS  Google Scholar 

  62. Frisch MJTT, GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc., Wallingford

  63. Choi H, Baik C, Kang SO, Ko J, Kang MS, Nazeeruddin MK, Gratzel M (2008) Angew Chem Int Edit 47:327–330

    Article  CAS  Google Scholar 

  64. Ning ZJ, Zhang Q, Wu WJ, Pei HC, Liu B, Tian H (2008) J Org Chem 73:3791–3797

    Article  CAS  Google Scholar 

  65. Peach MJG, Tellgrent EI, Salek P, Helgaker T, Tozer DJ (2007) J Phys Chem A 111:11930–11935

    Article  CAS  Google Scholar 

  66. Jacquemin D, Perpete EA, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) J Chem Phys 126:144105

    Article  Google Scholar 

  67. Limacher PA, Mikkelsen KV, Luthi HP (2009) J Chem Phys 130:194114

    Article  Google Scholar 

  68. Wonneberger H, Pschirer N, Bruder I, Schoneboom J, Ma CQ, Erk P, Li C, Bauerle P, Mullen K (2011) Chem–Asian J 6:1744–1747

    Google Scholar 

  69. Cahen D, Hodes G, Gratzel M, Guillemoles JF, Riess I (2000) J Phys Chem B 104:2053–2059

    Article  CAS  Google Scholar 

  70. Laurent AD, Jacquemin D (2013) Int J Quantum Chem 113:2019–2039

    Article  CAS  Google Scholar 

  71. Manzhos S (2013) MRS Commun 3:37–39

    Article  CAS  Google Scholar 

  72. Wu YZ, Marszalek M, Zakeeruddin SM, Zhang Q, Tian H, Gratzel M, Zhu WH (2012) Energ Environ Sci 5:8261–8272

    Article  CAS  Google Scholar 

  73. Ding WL, Wang DM, Geng ZY, Zhao XL, Xu WB (2013) Dyes Pigments 98:125–135

    Article  CAS  Google Scholar 

  74. Clark AE, Qin CY, Li ADQ (2007) J Am Chem Soc 129:7586–7595

    Article  CAS  Google Scholar 

  75. Pastore M, De Angelis F (2010) ACS Nano 4:556–562

    Article  CAS  Google Scholar 

  76. Koumura N, Wang ZS, Mori S, Miyashita M, Suzuki E, Hara K (2006) J Am Chem Soc 128:14256–14257

    Article  CAS  Google Scholar 

  77. Li YZ, Pullerits T, Zhao MY, Sun MT (2011) J Phys Chem C 115:21865–21873

    Article  CAS  Google Scholar 

  78. Li YZ, Shi Y, Chen MD, Li YQ, Su RZ, Zhao MY, Ma FC (2012) J Mol Model 18:4141–4149

    Article  Google Scholar 

  79. Sun MT (2006) J Chem Phys 124:054903

    Google Scholar 

  80. Sun MT, Chen JN, Xu HX (2008) J Chem Phys 128:064106

    Google Scholar 

  81. Song P, Li YZ, Ma FC, Pullerits T, Sun MT (2013) J Phys Chem 117:15879–15889

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant nos. 10604012 and 10974023), the Program for Liaoning Excellent Talents in University (grant no. LJQ2012002), and Program for New Century Excellent Talents in University (Grant No. NCET-12-0077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maodu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Chen, M. Structure-property relationships for three indoline dyes used in dye-sensitized solar cells: TDDFT study of visible absorption and photoinduced charge-transfer processes. J Mol Model 19, 5317–5325 (2013). https://doi.org/10.1007/s00894-013-2024-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2024-4

Keywords

Navigation