Skip to main content
Log in

A theoretical investigation on the conformation and the interaction of CHF2OCF2CHF2 (desflurane II) with one water molecule

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The conformation and the interaction of CHF2OCF2CHF2 (desflurane II) with one water molecule is investigated theoretically using the ab initio MP2/aug-cc-pvdz and DFT-based M062X/6-311++G(d,p) methods. The calculations include the optimized geometries, the harmonic frequencies of relevant vibrational modes along with a natural bond orbital (NBO) analysis including the NBO charges, the hybridization of the C atom and the intra- and intermolecular hyperconjugation energies. In the two most stable conformers, the CH bond of the F2HCO- group occupies the gauche position. The hyperconjugation energies are about the same for both conformers and the conformational preference depends on the interaction between the non-bonded F and H atoms. The deprotonation enthalpies of the CH bonds are about the same for both conformers, the proton affinity of the less stable conformer being 3 kcal mol−1 higher. Both conformers of desflurane II interact with water forming cyclic complexes characterized by CH…O and OH…F hydrogen bonds. The binding energies are moderate, ranging from −2.4 to −3.2 kcal mol−1 at the MP2 level. The origin of the blue shifts of the ν(CH) vibrations is analyzed. In three of the complexes, the water molecule acts as an electron donor. Interestingly, in these cases a charge transfer is also directed to the non bonded OH group of the water molecule. This effect seems to be a property of polyfluorinated ethers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lessarri A, Toribio AV, Suenram RD, Brugh DJ, Grabow JU (2010) The conformational landscape of the volatile anaesthetic sevoflurane. Phys Chem Chem Phys 12:9624–9631

    Article  Google Scholar 

  2. Polavarapu PL, Zhao C, Cholli AL, Vernice GG (1999) Vibrational circular dichorism, absolute configuration and predominant conformations of volatile anaesthetics: desflurane. J Phys Chem B 103:6127–6132

    Article  CAS  Google Scholar 

  3. Wang F, Polavarapu PL, Schurig V, Schmidt R (2002) Absolute configuration analysis of a degradation product of inhalation anaesthetic sevoflurane: a vibrational circular dichorism study. Chirality 14:618–624

    Article  CAS  Google Scholar 

  4. Zierkiewicz W, Wieczorek R, Hobza P, Michalska D (2011) Halogen bonded complexes between volatile anaesthetics (chloroform, halothane, Enflurane, isoflurane) and formaldehyde: a theoretical study. Phys Chem Chem Phys 13:5105–5113

    Article  CAS  Google Scholar 

  5. Papadimitriou VC, Kambanis KG, Lazarou YG, Papagiannakopoulos P (2004) Kinetic study for the reactions of several hydrofluoroethers with chlorine atom. J Phys Chem A 108:2666–2674

    Article  CAS  Google Scholar 

  6. Stevens JE, Macomber LD, Davis LW (2010) IR spectra and vibrational modes of the hydrofluoroethers CF3OCH3, CF3OCF2H and CF3OCF2CF2H and corresponding alkanes CF3CH3, CF3CF2H and CF3CF2CF2H. Open Phys Chem J 4:17–27

    Article  CAS  Google Scholar 

  7. Zierkiewicz W (2013) Reaction of volatile anaesthetic desflurane with chlorine atom. Theoretical investigation. Chem Phys Lett 555:72–78

    Article  CAS  Google Scholar 

  8. Hobza P, Havlas Z (2000) Blue shifting hydrogen bond. Chem Rev 100:4253–4264

    Article  CAS  Google Scholar 

  9. Kryachko ES, Zeegers- Huyskens T (2001) Theoretical study of the CH…O interaction in fluoromethanes.H2O and chloromethanes.H2O complexes. J Phys Chem A 105:7118–7125

    Article  CAS  Google Scholar 

  10. Hermansson K (2002) Blue shifting hydrogen bonds. J Phys Chem A 106:4695–4702

    Article  CAS  Google Scholar 

  11. Delanoye SN, Herrebout WA, Van der Veken BJ (2002) Improper or classical hydrogen bonding? a comparative cryosolutions infrared study of the complexes of HCClF2, HCCl2F, and HCCl3 with dimethyl ether. J Am Chem Soc 124:7490–7498

    Article  CAS  Google Scholar 

  12. Karpfen A, Kryachko ES (2006) On blue shifts of C-H stretching modes of dimethyl ether in hydrogen- and halogen-bonded complexes. Chem Phys Lett 431:428–433

    Article  CAS  Google Scholar 

  13. Nguyen HMT, Peeters J, Zeegers- Huyskens T (2006) Theoretical study of the blue shifting hydrogen bonds between CH2X2 and CHX3 (X = F, Cl, Br) and hydrogen peroxide. J Mol Struct 792:16–22

    Article  Google Scholar 

  14. Liu G, Ping L, Li H (2007) C-H…O hydrogen bond in chloroform-triformylmethane complex: blue-shifted or red shifted? Spectrochim Acta Part A 66:643–645

    Article  Google Scholar 

  15. Rutkowski K, Karpfen A, Milikova SM, Herrebout WA, Koll A, Wolscham P, Van der Venken B (2009) Cryospectroscopic and ab initio studies of haloform-trimethylamine H-bonded complexes. Phys Chem Chem Phys 11:1551–1563

    Article  CAS  Google Scholar 

  16. Mukhopadhyay A, Pandey P, Chakraboty T (2010) Blue- and red-shifting CH · · · O hydrogen bonded complexes between haloforms and ethers: correlation of donor νC−H spectral shifts with C − O − C angular strain of the acceptors. J Phys Chem A 114:5026–5033

    Article  CAS  Google Scholar 

  17. Oyaro N, Sellevag SR, Nielsen CJ (2005) Atmospheric chemistry of hydrofluoroethers: reaction of a series of hydrofluoroethers with OH radicals and Cl atoms, atmospheric lifetimes, and global warming potentials. J Phys Chem A 109:337–346

    Article  CAS  Google Scholar 

  18. Chandra AK (2012) Theoretical studies on the kinetics and mechanism of the Gas phase reaction of CHF2OCHF2 with OH radical. J Mol Mod 18:4239–4247

    Article  CAS  Google Scholar 

  19. Tokuhashi K, Takahashi A, Kaise M, Kondo S, Sekiya A, Yamashita S, Ito H (2000) Rate constant for the reactions of OH radical with CH3OCF2CHF2, CHF2OCH2CF2CHF2, CHF2OCH2CF2CF3 and CF3CH2OCF2CHF2 over the temperature range 250–430 K. J Phys Chem A 104:1165–1170

    Article  CAS  Google Scholar 

  20. Song G, Jia X, Gao Y, Luo J, Yu Y, Wang R, Pan X (2010) Theoretical studies on the mechanism and dynamics of OH radical with CH2FCF2OCHF2 and CH2FOCH2F. J Phys Chem A 114:9057–9068

    Article  CAS  Google Scholar 

  21. Yang L, Liu JY, Wan SQ, Li ZS (2009) Theoretical studies of the reactions of CF3CHClOCHF2/CF3CHFOCHF2 with OH radical and Cl atom and thier product radicals with OH. J Comput Chem 30:565–580

    Article  Google Scholar 

  22. Urata S, Takada A, Uchimaru T, Chandra AK (2003) Rate constants estimation for the reaction of hydrofluorocarbons and hydrofluoroethers with OH radical. Chem Phys Lett 368:215–223

    Article  CAS  Google Scholar 

  23. Chen L, Kutsuna S, Tokuhashi K, Sekiya A (2005) Kinetic study of the Gas phase reactions of CHF2CF2OCHF2 and CF3CHFCF2OCH2CF2CF3 with OH radicals at 253–328 K. Chem Phys Lett 403:180–184

    Article  CAS  Google Scholar 

  24. Wilson EW, Hamilton WA, Mount HR (2007) Rate constants for the reactions of hydroxyl radical with several fluoroethers by the relative rate method. J Phys Chem A 111:1610–1617

    Article  CAS  Google Scholar 

  25. Zierkiewicz W, Michalska D, Zeegers-Huyskens T (2013) Theorretical studies on the interaction between enflurane and water. J Mol Mod 19:1399–1405

    Article  CAS  Google Scholar 

  26. Sutradhar D, Zeegers-Huyskens Th, Chandra AK (2013) Strong hyperconjugative interactions in isolated and water complexes of desflurane: a theoretical investigation. J Phys Chem A dx.doi. org/10.1021

  27. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states and transition elements: two new functional and systematic testing of four M06-class functional and 12 other functional. Theor Chem Account 120:215–241

    Article  CAS  Google Scholar 

  28. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  29. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, NY

    Google Scholar 

  30. Brovarets OO, Hovorun DM (2013) Prototropic tautomerism and basic molecular principles of hypoxanthine Mutagenicity: an exhaustive quantum-chemical analysis. J Biomol Struct Dynam 31:913–936

    Article  CAS  Google Scholar 

  31. Yurenko YP, Zhurakivsky RO, Samijlenko SP, Hovorun DM (2011) Intramolecular CH∙∙∙O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-crick pairs. Quantum chemical and AIM analysis. J Biomol Struct Dynam 29:51–65

    Article  CAS  Google Scholar 

  32. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  33. Frisch MJ et al. (2009) GAUSSIAN 09, revision C.01. Gaussian, Inc, Wallingford

    Google Scholar 

  34. Pfeiffer A, Mark H-G, Oberhammer H (1998) Enflurane: structure and conformational properties. J Am Chem Soc 120:6384–6388

    Article  CAS  Google Scholar 

  35. Michalska D, Bienko DC, Czarnik-Matusewicz B, Wierzejewska M, Sandorfy C, Zeegers-Huyskens T (2007) Theoretical and experimental studies of enflurane. Infrared spectra in solution, in low-temperature argon matrix and blue shifts resulting from dimerization. J Phys Chem B 111:12228–12238

    Article  CAS  Google Scholar 

  36. Alabugin IV, Zeidan TA (2002) Stereoelectronic effects and general trends in hyperconjugative acceptor ability of σ bonds. J Am Chem Soc 124:3175–3185

    Article  CAS  Google Scholar 

  37. Nam PC, Nguyen M-T, Zeegers-Huyskens T (2007) Effects of fuorine-substitution on the molecular properties of dimethyl ethers: a theoretical investigation. J Mol Struct (THEOCHEM) 821:71–81

    Article  CAS  Google Scholar 

  38. Brovarets OO, Yurenko YP, Dubey IY, Hovorun DM (2012) Can DNA-binding proteins of replisome tautomerize nucleotide bases? Ab initio model study. J Biomol Struct Dynam 29:1101–1109

    Article  CAS  Google Scholar 

  39. Lessari A, VegaToribo A, Suenram RD, Brugh DJ, Nori-Shargh D, Boggs JE, Grabow J-U (2011) Structural evidence of anomeric effects in the anesthetic isoflurane. Phys Chem Chem Phys 13:6610–6618

    Article  Google Scholar 

  40. The correlation is Δr (CH) = −0.06 Δν (CH) + 0.094 (r = 0.978). The MP2 calculated data shows an even better correlation than the calculated M062X data

  41. Brovarets OO, Yurenko YP, Hovorun DM (2013) Intermolecular CH…O/N H-bonds in the biologically important pairs of natural nucleobases: a through quantum-chemical study. J Biomol Struct Dynam. doi:10.1080/07391102.2013.799439

    Google Scholar 

  42. Gu Y, Kar T, Scheiner S (1999) Fundamental properties of the CH…O interaction: is it a true hydrogen bond? J Am Chem Soc 121:9411–9422

    Article  CAS  Google Scholar 

  43. Alabugin A, Manoharan M, Peabody S, Weinhold F (2003) Electronic basis of improper hydrogen bonding: a subtle balance of hyperconjugation and rehybridization. J Am Chem Soc 125:5973–5987

    Article  CAS  Google Scholar 

  44. Joseph J, Jemmis ED (2007) Red-, blue-, or no-shift in hydrogen bonds: a unified explanation. J Am Chem Soc 129:4620–4632, references therein

    Article  CAS  Google Scholar 

  45. Sosa GL, Peruchena NM, Contreras RH, Castro EA (2002) Topological and NBO analysis of hydrogen bonding interactions involving C–H⋯O bonds. J Mol Struct (Theochem) 577:219–228

    Article  CAS  Google Scholar 

  46. Li AY (2007) Chemical origin of blue- and red shifted hydrogen bonds: intramolecular hyperconjugation and its coupling with intermolecular hyperconjugation. J Chem Phys 126:154102–154111

    Article  Google Scholar 

Download references

Acknowledgments

AKC acknowledges Council of Scientific and Industrial Research (CSIR), India for financial assistance through project no. 01(2494)/11/EMR-II and Computer Centre, North-Eastern Hill University (NEHU) for computing facilities. DS is thankful to NEHU for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit K. Chandra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutradhar, D., Zeegers-Huyskens, T. & Chandra, A.K. A theoretical investigation on the conformation and the interaction of CHF2OCF2CHF2 (desflurane II) with one water molecule. J Mol Model 19, 5045–5052 (2013). https://doi.org/10.1007/s00894-013-2016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2016-4

Keywords

Navigation