Skip to main content

Advertisement

Log in

Prediction of thermodynamically reversible hydrogen storage reactions utilizing Ca–M(M = Li, Na, K)–B–H systems: a first-principles study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Calcium borohydride is a potential candidate for onboard hydrogen storage because it has a high gravimetric capacity (11.5 wt.%) and a high volumetric hydrogen content (∼130 kg m−3). Unfortunately, calcium borohydride suffers from the drawback of having very strongly bound hydrogen. In this study, Ca(BH4)2 was predicted to form a destabilized system when it was mixed with LiBH4, NaBH4, or KBH4. The release of hydrogen from Ca(BH4)2 was predicted to proceed via two competing reaction pathways (leading to CaB6 and CaH2 or CaB12H12 and CaH2) that were found to have almost equal free energies. Using a set of recently developed theoretical methods derived from first principles, we predicted five new hydrogen storage reactions that are among the most attractive of those presently known. These combine high gravimetric densities (>6.0 wt.% H2) with have low enthalpies [approximately 35 kJ/(mol−1 H2)] and are thermodynamically reversible at low pressure within the target window for onboard storage that is actively being considered for hydrogen storage applications. Thus, the first-principles theoretical design of new materials for energy storage in future research appears to be possible.

Calculated van’t Hoff plot for reactions (10-24*) listed in the Ca-M(Li, Na, K)-B-H system (Tables 24). The region within the rectangular box corresponds to desirable temperatures and pressures for on-board hydrogen storage PH2 = 1-700 bar and T = 233 to +355 K

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. US Department of Energy (2013) Hydrogen storage. http://www.eere.energy.gov/hydrogenandfuelcells/storage/index.html

  2. Grochala W, Edwards PP (2004) Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem Rev 104:1823

    Article  Google Scholar 

  3. Filinchuk Y, Chernyshov D, Dmitriev V (2008) Light metal borohydrides: crystal structures and beyond. Z Kristallogr 223:649–659

    Article  CAS  Google Scholar 

  4. Züttel A, Borgschulte A, Orimo S (2007) Tetrahydroborates as new hydrogen storage materials. Scr Mater 56:823–828

    Article  Google Scholar 

  5. Alapati SV, Johnson JK, Sholl DS (2006) Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. J Phys Chem B 110:8769–8776

    Article  CAS  Google Scholar 

  6. Alapati SV, Johnson JK, Sholl DS (2007) Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage. Phys Chem Chem Phys 9:1438–1452

    Article  CAS  Google Scholar 

  7. Alapati SV, Johnson JK, Sholl DS (2007) First principles screening of destabilized metal hydrides for high capacity H2 storage using scandium. J Alloys Compd 446–447:23–27

    Article  Google Scholar 

  8. Alapati SV, Johnson JK, Sholl DS (2007) Predicting reaction equilibria for destabilized metal hydride decomposition reactions for reversible hydrogen storage. J Phys Chem C 111:1584–1591

    Article  CAS  Google Scholar 

  9. Kim KC, Kulkarni AD, Johnson JK, Sholl DS (2011) Large-scale screening of metal hydrides for hydrogen storage from first-principles calculations based on equilibrium reaction thermodynamics. Phys Chem Chem Phys 13:7218–7229

    Article  CAS  Google Scholar 

  10. Wang LL, Graham DD, Robertson IM, Johnson DD (2009) On the reversibility of hydrogen-storage reactions in Ca (BH4)2: characterization via experiment and theory. J Phys Chem C 113:20088–20096

    Article  CAS  Google Scholar 

  11. Kulkarni AD, Wang LL, Johnson DD, Sholl DS, Johnson JK (2010) First-principles characterization of amorphous phases of M2B12H12, M=Mg, Ca. J Phys Chem C 114:14601–14605

    Article  CAS  Google Scholar 

  12. Ozolins V, Majzoub EH, Wolverton C (2008) First-principles prediction of thermodynamically reversible hydrogen storage reactions in the Li-Mg-Ca-B-H system. J Am Chem Soc 131:230–237

    Article  Google Scholar 

  13. Minella CB, Garroni S, Olid D, Teixidor F, Pistidda C, Lindemann I, Gutfleisch O, Baro MD, Bormann R, Klassen T, Dornheim M (2011) Effect of transition metal fluorides on the sorption properties and reversible formation of Ca(BH4)2. J Phys Chem C 115:2497–2504

    Article  CAS  Google Scholar 

  14. Vajo JJ, Salguero TT, Gross AE, Skeith SL, Olson GL (2007) Thermodynamic destabilization and reaction kinetics in light metal hydride systems. J Alloys Compd 446–447:409–414

    Article  Google Scholar 

  15. Johnson JW, Brody JF (1982) Lithium closoborane electrolytes. III. Preparation and characterization. J Electrochem Soc 129:2213–2219

    Google Scholar 

  16. Miwa K, Ohba N, Towata S-I (2004) First-principles study on lithium borohydride LiBH4. Phys Rev B 69:245120–245128

    Article  Google Scholar 

  17. Martelli P, Caputo R, Remhof A, Mauron P, Borgschulte A, Züttel A (2010) Stability and decomposition of NaBH4. J Phys Chem C 114:7173–7177

    Article  CAS  Google Scholar 

  18. Guo YJ, Jia JF, Wang XH, Ren Y, Wu HS (2013) Crystal structures of XnB12H12 (M=Li, K, Ca) and hydrogen storage property of Na-(Li, K, Ca)-B-H systerm from first principles calculation. Chem Phys Lett 559:61–66

    Article  CAS  Google Scholar 

  19. Buchter F, Lodziana Z, Remhos A, Friednde O, Botgschulte A, Mauron P, Züttel A et al (2008) Structure of Ca (BD4)2 β-phase from combined neutron and synchrotron X-ray powder diffraction data and density functional calculations. J Phys Chem B 112:8042–8048

    Article  CAS  Google Scholar 

  20. Zavorotynska O, Corno M, Damin A, Spoto G, Ugliengo P, Baricco MA (2011) Theoretical study on the rotational motion and interactions in the disordered phase of MBH4 (M = Li, Na, K, Rb, Cs). J Phys Chem C 115:18890–18900

    Article  CAS  Google Scholar 

  21. Wunderlich JA, Lipscomb WN (1960) Structure of B12H12 2− ion. J Am Chem Soc 82:4427–4428

    Article  CAS  Google Scholar 

  22. Morosin B, Mullendore AW, Emin D, Slack GA (1986) In: Emin D, Aselage TL, Beckel CL, Howard IA, Wood C (eds) Boron-rich solids. AIP Conf Proc no 140. AIP, New York, p 70

  23. Ohba N, Miwa K, Aoki M, Noritake T, Towata S, Nakamori Y, Orimo S, Züttel A (2006) Thermodynamical stability of calcium borohydride Ca (BH4)2. Phys Rev B 74:155122–155127

    Article  Google Scholar 

  24. Akbarzadeh A, Ozolins V, Wolverton C (2007) First principles determination of multi-component hydride phase diagrams: application to the Li–Mg–N–H system. Adv Mater 19:3233–3239

    Article  CAS  Google Scholar 

  25. Lee JY, Ravnsbak D, Lee Y–S, Kim Y, Cerenius Y, Shim J-H, Jense TR, Hur NH (2009) Decomposition reactions and reversibility of the LiBH4−Ca(BH4)2 composite. J Phys Chem C 113:15080–15086

    Article  CAS  Google Scholar 

  26. Zhang Y, Majzoub E, Ozolins V, Wolverton C (2010) Theoretical prediction of different decomposition paths for Ca (BH4)2 and Mg (BH4)2. Phys Rev B 82:174107–174114

    Article  Google Scholar 

  27. Siegel D, Wolverton C, Ozolins V (2007) Thermodynamic guidelines for the prediction of hydrogen storage reactions and their application to destabilized hydride mixtures. Phys Rev B 76:134102

    Article  Google Scholar 

  28. Reilly JJ, Wiswall RH (1967) Reaction of hydrogen with alloys of magnesium and copper. Inorg Chem 6:2220–2223

    Google Scholar 

  29. Barkhordarian G, Klassen T, Dornheim M, Bormann R (2007) Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides. J Alloys Compd 440:L18–L21

    Article  CAS  Google Scholar 

  30. Vajo JJ, Olson GL (2007) Hydrogen storage in destabilized chemical systems. Scri Mater 56:829–834

    Article  CAS  Google Scholar 

  31. Xiao XB, Yu WY, Tang BY (2008) First-principles study of a double-cation alkali metal borohydride LiK (BH4)2. J Phys Condens Matter 20:445210

    Article  Google Scholar 

  32. Minella CB, Garroni S, Olid D, Teixidor F, Pistidda C, Lindemann I, Gutfleisch O, Baro MD, Bormann R, Klassrn T, Dornheim M (2011) Experimental evidence of Ca[B12H12] formation during decomposition of a Ca(BH4)2 + MgH2 based reactive hydride composite. J Phys Chem C 115:18010–18014

    Article  Google Scholar 

  33. Barkhordarian G, Jensen TR, Doppiu S, Bosenberg U, Borgschulte A, Gremaud R et al (2008) Formation of Ca (BH4)2 from hydrogenation of CaH2+ MgB2 composite. J Phys Chem C 112:2743–2749

    Article  CAS  Google Scholar 

  34. Kim Y, Reed D, Lee Y-S, Lee JY, Shim J-H, Book D, Cho YM (2009) Identification of the dehydrogenated product of Ca(BH4)2. J Phys Chem C 113:5865–5871

    Article  CAS  Google Scholar 

  35. Caputo R, Garroni S, Olid D, Teixidor F, Suriñach S, Baró MD (2010) Can Na2[B12H12] be a decomposition product of NaBH4? Phys Chem Chem Phys 12:15093–15100

    Article  CAS  Google Scholar 

  36. Mao JF, Guo ZP, Yu XB, Liu HK (2011) Improved hydrogen storage properties of NaBH4 destabilized by CaH2 and Ca (BH4)2. J Phys Chem C 115:9283–9290

    Article  CAS  Google Scholar 

  37. Tekin A, Caputo R, Züttel A (2010) First-principles determination of the ground-state structure of LiBH4. Phys Rev Lett 104:215501–215504

    Article  Google Scholar 

  38. Her JH, Stephens PW, Gao Y, Soloveichik GL, Rijssenbeek J, Andrus M, Zhao JC (2007) Structure of unsolvated magnesium borohydride Mg(BH4)2. Acta Cryst B63:561–568

    Google Scholar 

  39. Chlopek K, Frommen C, Leon A, Zabara O, Fichtner M (2007) Synthesis and properties of magnesium tetrahydroborate, Mg(BH4)2. J Mater Chem 17:3496–3503

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (21031003 and 21103101) and the Key Project of Chinese Ministry of Education (no. 212022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haishun Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Ren, Y., Wu, H. et al. Prediction of thermodynamically reversible hydrogen storage reactions utilizing Ca–M(M = Li, Na, K)–B–H systems: a first-principles study. J Mol Model 19, 5135–5142 (2013). https://doi.org/10.1007/s00894-013-2012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2012-8

Keywords

Navigation