Skip to main content
Log in

Theoretical investigations on the synthesis mechanism of cyanuric acid from NH3 and CO2

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the synthesis of cyanuric acid from NH3 and CO2, urea and isocyanic acid OCNH are two pivotal intermediates. Based on density functional theory (DFT) calculations, the synthesis mechanism of cyanuric acid from NH3 + CO2 was investigated systematically. Urea can be synthesized from NH3 and CO2, and cyanuric acid can be obtained from urea or NH3 + CO2. In the stepwise mechanism of cyanuric acid from urea or NH3 + CO2, the energy barriers are relatively high, and the condition of high pressure and temperature does not decrease the energy barriers. Our theoretical model shows that cyanuric acid is actually acquired from OCNH via a one-step cycloaddition reaction.

The synthesis mechanism of cyanuric acid from NH3 and CO2 was revealed systematically with density functional theory methods relative to 3NH3 + 3CO2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liang X, Zheng W, Wong N, Li J, Tian A (2004) J Mol Struc (Theochem) 672:151–159

    Article  CAS  Google Scholar 

  2. Kobayashi T, Okada A, Fujii Y, Niimi K, Hamamoto S, Yasui T, Tozawa K, Kohri K (2010) Urol Res 38:117–125

    Article  CAS  Google Scholar 

  3. Luo Y, Zhang L, Yang W, Liu W, Lu W, Li M (2011) J Labelled Compd Rad 54:171–172

    Article  CAS  Google Scholar 

  4. Musumeci D, Ward MD (2011) CrystEngComm 13:1067–1069

    Article  CAS  Google Scholar 

  5. Dorne JL, Doerge DR, Vandenbroeck M, Fink-Gremmels J, Mennes W, Knutsen HK, Vernazza F, Castle L, Edler L, Benford D (2013) Toxicol Appl Pharm 270:218–229

    Article  CAS  Google Scholar 

  6. Pop F, Socaci C, Terec A, Condamine E, Varga RA, Raţ CI, Roncali J, Grosu I (2012) Tetrahedron 68:8581–8588

    Article  CAS  Google Scholar 

  7. Bahrami K, Khodaei MM, Sohrabnezhad S (2011) Tetrahedron Lett 52:6420–6423

    Article  CAS  Google Scholar 

  8. Xue C, Zhu H, Zhang T, Cao D, Hu Z (2011) Colloids Surf A: Physicochem Eng Aspects 375:141–146

    Article  CAS  Google Scholar 

  9. Hu A, Zhang F (2010) J Phys Condens Matter 22:505402

    Article  Google Scholar 

  10. Ripka AS, Díaz DD, Sharpless KB, Finn MG (2003) Org Lett 5:1531–1533

    Article  CAS  Google Scholar 

  11. Tsipis CA, Karipidis PA (2003) J Am Chem Soc 125:2307–2318

    Article  CAS  Google Scholar 

  12. Vinogradova EV, Fors BP, Buchwald SL (2012) J Am Chem Soc 134:11132–11135

    Article  CAS  Google Scholar 

  13. Kanno E, Yamanoi K, Koya S, Azumaya I, Masu H, Yamasaki R, Saito S (2012) J Org Chem 77:2142–2148

    Article  CAS  Google Scholar 

  14. Wu C, Cheng H, Liu R, Wang Q, Hao Y, Yu Y, Zhao F (2010) Green Chem 12:1811–1816

    Article  CAS  Google Scholar 

  15. Seifer GB (2002) Russ J Coord Chem 28:301–324

    Article  CAS  Google Scholar 

  16. Tsipis CA, Karipidis PA (2005) J Phys Chem A 109:8560–8567

    Article  CAS  Google Scholar 

  17. She D, Yu H, Huang Q, Li F, Li C (2010) Molecules 15:1898–1902

    Article  CAS  Google Scholar 

  18. Piazzesi G, Kröcher O, Elsener M, Wokaun A (2006) Appl Catal B: Environ 65:55–61

    Article  CAS  Google Scholar 

  19. Geith J, Klapötke TM (2001) J Mol Struc (Theochem) 538:29–39

    Article  CAS  Google Scholar 

  20. Bernhard AM, Peitz D, Elsener M, Wokaun A, Kröcher O (2012) Appl Catal B: Environ 115–116:129–137

    Article  Google Scholar 

  21. Tang H, Doerksen RJ, Tew GN (2005) Chem Commun 12:1537–1539

    Article  Google Scholar 

  22. Wells GM, Dudding T, Belding L, Frick JA, Nayek A, Huang J, Katz SJ, Bergmeier SC (2012) Tetrahedron 68:3980–3987

    Article  CAS  Google Scholar 

  23. Li TH, Wang CM, Xie XG, Du GB (2012) J Phys Org Chem 25:118–125

    Article  CAS  Google Scholar 

  24. Nowacki A, Sikora K, Dmochowska B, Wiśniewski A (2013) J Mol Model. doi:10.1007/s00894-013-1835-7

    Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Oritz JV, Stefanov B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA; Gaussian 03, revision C.02 (2004) Gaussian Inc; Wallingford CT

  26. Cheng X, Chen D, Liu Y (2012) Chem Phys Chem 13:2392–2404

    Article  CAS  Google Scholar 

  27. Head-Gordon M, Pople JA, Frisch M (1988) Chem Phys Lett 153:503–506

    Article  CAS  Google Scholar 

  28. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  29. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  30. Fang D, Fu X (1996) J Mol Struc (Theochem) 365:219–223

    Article  CAS  Google Scholar 

  31. Wei X, Sun X, Wu X, Geng S, Ren Y, Wong N, Li W (2011) J Mol Model 17:2069–2082

    Article  CAS  Google Scholar 

  32. Zabardasti A, Solimannejad M (2007) J Mol Struc (Theochem) 819:52–59

    Article  CAS  Google Scholar 

  33. Rode JE, Dobrowolski JC (2006) J Phys Chem A 110:3723–3737

    Article  CAS  Google Scholar 

  34. Zhang X, Geng Z (2010) J Mol Struc (Theochem) 955:33–38

    Article  CAS  Google Scholar 

  35. Zabardasti A, Amani S, Solimannejad M, Salehnassaj M (2009) Struct Chem 20:1087–1092

    Article  CAS  Google Scholar 

  36. Rácz Á, Váradi A, Mazák K, Kökösi J, Noszál B (2013) J Mol Model. doi:10.1007/s00894-013-1905-x

    Google Scholar 

  37. Czekaj I, Kröcher O, Piazzesi G (2008) J Mol Catal A Chem 280:68–80

    Article  CAS  Google Scholar 

  38. Feng W, Wang Y, Zhang S (1995) J Mol Struc (Theochem) 342:147–151

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21173129 and 11174215), the Natural Science Foundation of Shandong Province, China (No. ZR2012BL10) and the University Science and Technology Project of Shandong Province (No. J13LD05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueli Cheng or Yongjun Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, X., Zhao, Y., Zhu, W. et al. Theoretical investigations on the synthesis mechanism of cyanuric acid from NH3 and CO2 . J Mol Model 19, 5037–5043 (2013). https://doi.org/10.1007/s00894-013-2003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2003-9

Keywords

Navigation