Skip to main content
Log in

Easy methods to study the smart energetic TNT/CL-20 co-crystal

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a high-energy nitramine explosive with high mechanical sensitivity. 2,4,6-trinitrotoluene (TNT) is insensitive but by no means a high performance explosive. To reveal the significant importance and smart-material functionality of the energetic-energetic co-crystals, the stability, mechanical and explosive properties TNT/CL-20 co-crystal, TNT crystal and CL-20 crystal were studied. Non-hydrogen bonded non-covalent interactions govern the structures of energetic-energetic co-crystals. However, it is very difficult to accurately calculate the non-covalent intermolecular interaction energies. In this paper, the local conformation and the intricate non-covalent interactions were effectively mapped and analyzed from the electron density (ρ) and its derivatives. The results show that the two components TNT and CL-20 are connected mainly by nitro–aromatic interactions, and nitro–nitro interactions. The steric interactions in TNT/CL-20 could not be confronted with the attractive interactions. Moreover, the scatter graph of TNT crystal reveals the reason why TNT is brittle. The detailed electrostatic potential analysis predicted that the detonation velocities (D) and impact sensitivity for the compounds both increase in the sequence of CL-20 > TNT/CL-20 co-crystal > TNT. Additionally, TNT/CL-20 co-crystal has better malleability than its pure components. This demonstrates the capacity and the feasibility of realizing explosive smart materials by co-crystallization, even if strong hydrogen bonding schemes are generally lacking in energetic materials.

Scatter graph (left) and gradient isosurface (right) of intermolecular interactions in TNT/CL-20 co-crystal

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sikder AK, Sikder N (2004) J Hazard Mater A112:1–15

    Article  Google Scholar 

  2. Lara OF, Espinosa PG (2007) Supramol Chem 19:553–557

    Article  Google Scholar 

  3. Shan N, Zaworotko MJ (2008) Drug Discov Today 13:440–446

    Article  CAS  Google Scholar 

  4. Bond DA (2007) Cryst Eng Comm 9:833–834

    Article  CAS  Google Scholar 

  5. Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ (2006) Pharm Sci 95:499–516

    Article  CAS  Google Scholar 

  6. Fried LE, Manaa MR, Pagoria PF, Simpson RLA (2001) Rev Mater Res 31:291–321

    Article  CAS  Google Scholar 

  7. Agrawal JP, Hodgson RD (2007) Organic chemistry of explosives. Wiley, Chichester

  8. Yang ZW, Li HZ, Zhou XQ, Zhang CY, Huang H, Li JS, Nie FD (2012) Cryst Growth Des 12:5155–5158

    Article  CAS  Google Scholar 

  9. Desiraju GR (1995) Angew Chem Int Ed Engl 34:2311–2327

    Article  CAS  Google Scholar 

  10. Etter MC (1991) J Phys Chem 95:4601–4610

    Article  CAS  Google Scholar 

  11. Kira BL, Adam JM (2010) Cryst Growth Des 10:5341–5347

    Article  Google Scholar 

  12. Landenberger KB, Matzger AJ (2012) Cryst Growth Des 12:3603–3609

    Article  CAS  Google Scholar 

  13. Onas B, Adam JM (2011) Angew Chem Int Ed 50:8960–8963

    Article  Google Scholar 

  14. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) Cryst Growth Des 12:4311–4314

    Article  CAS  Google Scholar 

  15. Thottempudi V, Shreeve JM (2011) J Am Chem Soc 133:19982–19992

    Article  CAS  Google Scholar 

  16. Wei CX, Huang H, Duan XH, Pei CH (2011) Propellants Explos Pyrotech 36:416–423

    Article  CAS  Google Scholar 

  17. Guo CY, Zhang HB, Wang XC, Liu XF, Sun J (2013) J Mater Sci 48:1351–1357

    Article  CAS  Google Scholar 

  18. Shen JP, Duan XH, Luo QP (2011) Cryst Growth Des 11:1759–1765

    Article  CAS  Google Scholar 

  19. Roland B, Dieter B, Georg J (2009) J Am Chem Soc 131:2104–2106

    Article  Google Scholar 

  20. Oswald IDH, Motherwell SWD, Parsons SA (2004) Acta Cryst E 60:1967–1969

    Article  Google Scholar 

  21. Basavoju S, Boström D, Velaga PS (2006) Cryst Growth Des 6:2699–2708

    Article  CAS  Google Scholar 

  22. Ishweshwar P, McMahon JA, Bis JA, Zaworotko M (2006) J Pharm Sci 95:499–516

    Article  Google Scholar 

  23. Hathwar VR, Pal R, Guru Row TN (2010) Cryst Growth Des 10:3306–3310

    Article  CAS  Google Scholar 

  24. Erin RJ, Shahar K, Paula MS, Julia CG, Aron JC, Yang WT (2010) J Am Chem Soc 132:6498–6506

    Article  Google Scholar 

  25. Liu C, Pilania G, Wang C, Ramprasad R (2012) J Phys Chem A 116:9347–9352

    Article  CAS  Google Scholar 

  26. Langreth DC, Lundqvist BI, Chakarova-Käck SD, Cooper VR, Dion M, Hyldgaard P, Kelkkanen A, Kleis J, Kong L, Li S, Moses PG, Murray E, Puzder A, Rydberg H, Schröder E, Thonhauser T (2009) J Phys Condens Matter 21:084203–084217

    Article  CAS  Google Scholar 

  27. Barone V, Casarin M, Forrer D, Pavone M, Sambi M, Vittadini A (2009) J Comput Chem 30:934–939

    Article  CAS  Google Scholar 

  28. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  29. Ehrlich S, Moellmann J, Reckien W, Bredow T, Grimme S (2011) Chem Phys Chem 12:3414–3420

    Article  CAS  Google Scholar 

  30. Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102:073005(4)

    Article  Google Scholar 

  31. Grimme SJ (2004) Comput Chem 25:1463–1473

    Article  CAS  Google Scholar 

  32. Grimme SJ (2006) Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  33. Grimme SJ, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104–154123

    Article  Google Scholar 

  34. Neumann MA, Perrin MA (2005) J Phys Chem B 109:15531–15541

    Article  CAS  Google Scholar 

  35. Steven H, Carole AM, Colin RP, Peter JG (2011) Proceedings of the 13th Seminar on New Trends in Research of Energetic Materials, Czech Republic, 245–255

  36. Sándor LB, Martin US, Andrew DB (2012) Cryst Eng Comm 14:1967–1971

    Article  Google Scholar 

  37. Bader RFW (1990) Oxford University Press, Oxford (UK)

  38. Espinosa E, Souhassou M, Lachekar H, Lecomte C (1999) Acta Cryst B 55:563–572

    Article  Google Scholar 

  39. Grabowski SJ (2001) J Phys Chem A 105:10739–10746

    Article  CAS  Google Scholar 

  40. Hohenberg P, Kohn W (1964) Phys Rev B 136:864–871

    Article  Google Scholar 

  41. Becke AD (1995) In: Yarkony DR (ed) Modern electronic structure theory. World Scientific, Singapore, pp 1022–1046

    Chapter  Google Scholar 

  42. Cohen AJ, Mori-Sánchez P, Yang W (2008) Science 321:792–794

    Article  CAS  Google Scholar 

  43. Zupan A, Burke K, Ernzerhof M, Perdew JP (1997) J Chem Phys 106:10184–10193

    Article  CAS  Google Scholar 

  44. Julia CG, Erin RJ, Shahar K, Robin C, Piquemal JP, David NB, Yang WT (2011) J Chem Theory Comput 7:625–632

    Article  Google Scholar 

  45. Zhang SY, Liu JQ, Yu XX (1992) Beijing Institute of Technology Press, Beijing

  46. Theodorou DN, Suter UW (1986) Macromolecules 19:139–154

    Article  CAS  Google Scholar 

  47. Ma XF, Zhao F, Ji GF, Zhu WH, Xiao JJ, Xiao HM (2008) J Mol Struct (THEOCHEM) 851:22–29

    Article  CAS  Google Scholar 

  48. Furio E (1997) Spring College in Computational Physics, ICTP, Trieste, June. http://www.fisica.uniud.it/~ercolessi/md/md.pdf

  49. Yuji K, Reiko IH, Yoshitaka Y, Shinya M, Atsushi K, Osamu T, Katsuyoshi Y, Kazuyoshi U (2009) J Phys Chem A 113:2551–2560

    Article  Google Scholar 

  50. Andersen HC (1980) J Chem Phys 72:2374–2383

    Article  Google Scholar 

  51. Allen MP, Tindesley DJ (1989) Oxford University Press, New York

  52. Ewald PP (1921) Ann Phys 64:253–287

    Article  Google Scholar 

  53. Sun H (1998) J Chem Phys B 102:7338–7364

    Article  CAS  Google Scholar 

  54. Accelrys Software Inc (2011) Materials studio release notes, release 6.0. Accelrys Software, San Diego

    Google Scholar 

  55. Runtz GR, Bader RFW, Messer R (1977) Can J Chem 55:3040–3045

    Article  CAS  Google Scholar 

  56. Politzer P, Murray JS (2002) Theor Chem Accounts 108:134–142

    Article  CAS  Google Scholar 

  57. Murray JS, Politzer P (2011) WIREs Comp Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  58. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  59. Murray JS, Lane P, Politzer P (1998) Mol Phys 93:187–194

    Article  CAS  Google Scholar 

  60. Murray JS, Lane P, Politzer P (1995) Mol Phys 85:1–8

    Article  CAS  Google Scholar 

  61. Politzer P, Murray JS (1995) Mol Phys 86:251–255

    Article  CAS  Google Scholar 

  62. Murray JS, Lane P, Politzer P (2009) Mol Phys 107:89–97

    Article  CAS  Google Scholar 

  63. Politzer P, Murray JS (1996) J Mol Struct 376:419–424

    Article  CAS  Google Scholar 

  64. Rice BM, Hare JJ (2002) J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

  65. Shu YJ, Huo JC (2011) Chemical Industry Press, Beijing

  66. Zeman S, Friedl Z (2012) Propellants Explos Pyrotech 37:609–613

    Article  CAS  Google Scholar 

  67. Qin L, Xiao HM (2009) J Hazard Mater 164:329–336

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from National Natural Science Foundation of China—CAEP project (No. 11076002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanjie Shu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Shu, Y., Gao, S. et al. Easy methods to study the smart energetic TNT/CL-20 co-crystal. J Mol Model 19, 4909–4917 (2013). https://doi.org/10.1007/s00894-013-1988-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1988-4

Keywords

Navigation