Skip to main content
Log in

Redox and Lewis acid–base activities through an electronegativity-hardness landscape diagram

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Chemistry is the science of bond making and bond breaking which requires redistribution of electron density among the reactant partners. Accordingly acid–base and redox reactions form cardinal components in all branches of chemistry, e.g., inorganic, organic, physical or biochemistry. That is the reason it forms an integral part of the undergraduate curriculum all throughout the globe. In an electronegativity (χ)- hardness (η) landscape diagram the diagonal χ = η line separates reducing agents from oxidizing agents as well as Lewis acids from Lewis bases. While electronegativity is related to the degree of electron transfer between two reactants, hardness is related to the resistance to that process. Accordingly the electronegativities of oxidizing agents/Lewis acids are generally greater than the corresponding hardness values and the reverse is true for reducing agents/Lewis bases. Electrophiles and nucleophiles are also expected to follow similar trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaka

    Google Scholar 

  2. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  3. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7522

    Article  CAS  Google Scholar 

  4. Pearson RG (1997) Chemical hardness: application from molecules to solids. Wiley-VCH, Weinheim

    Book  Google Scholar 

  5. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  6. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874

    Article  CAS  Google Scholar 

  7. Chattaraj PK (2009) Ed., Chemical reactivity theory: a density functional view. Taylor and Francis/CRC Press, Florida

    Book  Google Scholar 

  8. Philips JC (1977) Advances in solid state physics. In: Trensch J (ed) Festkorper probleme XVII, Viewing, Braunschweig, pp 109–134

  9. Simon G, Bloch AN (1973) Pauli-force model potential for solids. Phys Rev B 7:2754–2761

    Article  Google Scholar 

  10. St John J, Bloch AN (1974) Quantum-defect electronegativity scale for nontransition elements. Phys Rev Lett 33:1095–1098

    Article  CAS  Google Scholar 

  11. Mooser E, Pearson WB (1959) On the crystal chemistry of normal valence compounds. Acta Crystallogr 12:1015–1022

    Article  CAS  Google Scholar 

  12. Sankar S, Parr RG (1985) Electronegativity and hardness as coordinates in structure stability diagrams. Proc Natl Acad Sci U S A 82:264–266

    Article  Google Scholar 

  13. Chattaraj PK, Das R, Duley S, Vigneresse JL (2012) Structure-stability diagrams and stability-reactivity landscapes: a conceptual DFT study. Theo Chem Acc 131(1089):1–8

    CAS  Google Scholar 

  14. Pearson RG (1987) Recent advances in the concept of hard and soft acids and bases. J Chem Educ 64:561–567

    Article  CAS  Google Scholar 

  15. Atkins P, Overton T, Rourke J, Weller M, Armstrong F (2006) Shriver & Atkins inorganic chemistry, 4th edn. Oxford University Press, New York

    Google Scholar 

  16. Huheey JH (1972) Inorganic Chemistry: Principles of Structure and Reactivity. Harper Row, New York

    Google Scholar 

  17. Atkins P, Paula J (2008) Atkins’ physical chemistry. Oxford University Press

  18. Levine I (2008) Physical Chemistry, McGraw-Hill Science/Engineering/Math, 6th edn

  19. Carey FA, Sundberg RJ (1990) Advanced organic chemistry: structure and mechanisms (Part A) Springer

  20. Lowry TH, Richardson KS (1976) Mechanism and theory in organic chemistry. Harper Row, New York

    Google Scholar 

  21. Lehninger A, Nelson DL, Cox MM (2008) Lehninger principles of biochemistry, 5th edn. Freeman, New York

  22. Goodstein MP (1970) Interpretation of Oxidation-Reduction. J Chem Educ 47:452–457

    Article  CAS  Google Scholar 

  23. Pearson RG (1968) Hard and soft acids and bases, HSAB, part I. J Chem Educ 45: 581–587, part II. J Chem Educ 45:643–648

    Google Scholar 

  24. Parthasarathi R, Padmanabhan J, Elango M, Chitra K, Subramanian V, Chattaraj PK (2006) pKa prediction using group philicity. J Phys Chem A 110:6540–6544

    Article  CAS  Google Scholar 

  25. Mulliken RS (1934) A new electroaffinity scale together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys 2:782–793

    Article  CAS  Google Scholar 

  26. Koopmans T (1933) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104–113

    Article  CAS  Google Scholar 

  27. Pearson RG (1999) The principle of maximum hardness. Acc Chem Res 26:250–255

    Article  Google Scholar 

  28. Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

  29. Chattaraj PK, Liu GH, Parr RG (1995) The maximum hardness principle in the Gyftopoulos-Hatsopoulos three-level model for an atomic or molecular species and its positive and negative ions. Chem Phys Lett 237:171–176

    Article  CAS  Google Scholar 

  30. Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018

    Article  CAS  Google Scholar 

  31. Pearson RG (1999) Maximum chemical and physical hardness. J Chem Educ 76:267–275

    Article  CAS  Google Scholar 

  32. Chattaraj PK, Maiti B (2001) Electronic structure principles and the atomic shell structure. J Chem Educ 78:811–813

    Article  CAS  Google Scholar 

  33. Chattaraj PK, Sarkar U, Roy DR (2007) Electronic structure principles and aromaticity. J Chem Educ 84:354–358

    Article  CAS  Google Scholar 

  34. Gaussian 09 (2010) Revision C.01, Gaussian, Inc. Wallingford, CT

  35. Domingo LR, Aurell MJ, Perez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron 58:4417–4423

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are delighted to dedicate this paper to Professor Robert G. Parr, a first rate scientist and a great human being, on his ninety-second birthday. We thank the University Grants Commission (UGC), New Delhi for financial assistance. PKC thanks the Department of Science & Technology (DST), New Delhi for the Sir J. C. Bose National Fellowship. We would like to thank Professors A. Basak, and D. Mal and Mr. Sukanta Mondal for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratim Kumar Chattaraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, R., Vigneresse, JL. & Chattaraj, P.K. Redox and Lewis acid–base activities through an electronegativity-hardness landscape diagram. J Mol Model 19, 4857–4864 (2013). https://doi.org/10.1007/s00894-013-1986-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1986-6

Keywords

Navigation