Skip to main content
Log in

Exploring surface reactivity of phosphorous-doped (6,0) and (4,4) BC3 nanotubes: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We report a density functional theory study on the electronic structure properties of pristine and phosphorous-doped (6,0) and (4,4) single-walled BC3 nanotubes (BC3NTs). We examine the usefulness of local reactivity descriptors to predict the reactivities of different carbon/boron atomic sites on the external surface of the tubes. Electrostatic potentials VS(r) and average local ionization energies ĪS(r) are computed on the surface of the investigated BC3NTs. A general feature of the systems considered here is that the magnitudes of negative VS(r) associated with carbon atoms tend to be stronger when the boron atom is substituted with a phosphorous atom. In order to verify the surface reactivity pattern based on the chosen reactivity descriptors, we calculated the reaction energies for the interaction of an H+ ion or H radical with external surface of the (6,0) and (4,4) BC3NTs. It is clear that, for each nanotube studied, the reaction energies correlate well with the values of VS(r) and ĪS(r).

Structure and atomic numbering scheme for a pristine (6,0) BC3NT and b pristine (4,4) BC3NT

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dinadayalane TC, Leszczynski J (2010) Remarkable diversity of carbon–carbon bonds: structures and properties of fullerenes, carbon nanotubes, and graphene. Struct Chem 21:1155–1169

    Article  CAS  Google Scholar 

  2. Saha S, Dinadayalane TC, Leszczynska D, Leszczynski J (2012) Open and capped (5,5) armchair SWCNTs: a comparative study of DFT-based reactivity descriptors. Chem Phys Lett 541:85–91

    Article  CAS  Google Scholar 

  3. Nojeh A, Lakatos GW, Peng S, Cho K, Pease RFW (2003) A carbon nanotube cross structure as a nanoscale quantum device. Nano Lett 3:1187–1190

    Article  CAS  Google Scholar 

  4. Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4:1790–1798

    Article  CAS  Google Scholar 

  5. Cruz-Silva E, López-Urías F, Muñoz-Sandoval E, Sumpter BG, Terrones H, Charlier JC, Meunier V, Terrones M (2010) Electronic transport and mechanical properties of phosphorus- and phosphorus nitrogen-doped carbon nanotubes. ACS Nano 3:1913–1921

    Article  Google Scholar 

  6. Mykhailenko O, Matsui D, Prylutskyy Y, Le Normand F, Eklund P, Scharff P (2007) Monte Carlo simulation of intercalated carbon nanotubes. J Mol Model 13:283–287

    Article  CAS  Google Scholar 

  7. Nikitin A, Li X, Zhang Z, Ogasawara H, Dai H, Nilsson A (2008) Hydrogen storage in carbon nanotubes through the formation of stable CH bonds. Nano Lett 8:162–167

    Article  CAS  Google Scholar 

  8. Chen P, Wu X, Lin J, Tan K (1999) High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285:91–93

    Article  CAS  Google Scholar 

  9. Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007) Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater 6:507–511

    Article  CAS  Google Scholar 

  10. Wang Z, Jia R, Zheng J, Zhao J, Li L, Song J, Zhu Z (2011) Nitrogen-promoted self-assembly of N-doped carbon nanotubes and their intrinsic catalysis for oxygen reduction in fuel cells. ACS Nano 5:1677–1684

    Article  CAS  Google Scholar 

  11. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764

    Article  CAS  Google Scholar 

  12. Yang S, Zhao G, Khosravi E (2010) First principles studies of nitrogen doped carbon nanotubes for dioxygen reduction. J Phys Chem C 114:3371–3375

    Article  CAS  Google Scholar 

  13. Xu X, Jiang S, Hu Z, Liu S (2010) Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing. ACS Nano 4:4292–4298

    Article  CAS  Google Scholar 

  14. Cruz-Silva E, López-Urías F, Munõz-Sandoval E, Sumpter BG, Terrones H, Charlier JC, Meunier V, Terrones M (2009) Electronic transport and mechanical properties of phosphorus- and phosphorus nitrogen-doped carbon nanotubes. ACS Nano 3:1913–1921

    Article  CAS  Google Scholar 

  15. Guo H, Kumar S, Hauge RH, Smalley RE (2004) Polyacrylonitrile single-walled carbon nanotube composite fibers. Adv Mater 16:58–61

    Article  Google Scholar 

  16. Panchakarla LS, Govindaraj A, Rao CNR (2007) Nitrogen- and boron-doped double-walled carbon nanotubes. ACS Nano 1:494–500

    Article  CAS  Google Scholar 

  17. Miyamoto Y, Rubio A, Louie SG, Cohen ML (1994) Electronic properties of tubule forms of hexagonal BC3. Phys Rev B 50:18360–18366

    Article  CAS  Google Scholar 

  18. Su WS, Chang CP, Li MF, Li TL (2011) Electronic structures and work functions of BC3 nanotubes: a first-principle study. J Appl Phys 110:014312

    Article  Google Scholar 

  19. Tománek D, Wentzcovitch RM, Louie SG, Cohen ML (1988) Calculation of electronic and structural properties of BC3. Phys Rev B 37:3134–3136

    Article  Google Scholar 

  20. Wang Q, Chen LQ, Annett JF (1996) Stability and charge transfer of C3B ordered structures. Phys Rev B 54:R2271–R2275

    Article  CAS  Google Scholar 

  21. Fuentes GG, Borowiak-Palen E, Knupfer M, Pichler T, Fink J, Wirtz L, Rubio A (2004) Formation and electronic properties of BC3 single-wall nanotubes upon boron substitution of carbon nanotubes. Phys Rev B 69:245403

    Article  Google Scholar 

  22. Borowiak-Palen E, Rümmeli M, Gemming T, Knupfer M, Kalenczuk RJ, Pichler T (2005) Formation of novel nanostructures using carbon nanotubes as a frame. Synth Metal 153:345–348

    Article  CAS  Google Scholar 

  23. Tanaka H, Kawamata Y, Simizu H, Fujita T, Yanagisawa H, Otani S, Oshima C (2005) Novel macroscopic BC3 honeycomb sheet. Solid State Commun 136:22–25

    Article  CAS  Google Scholar 

  24. Herńandez E, Goze C, Bernier P, Rubio A (1998) Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett 80:4502–4505

    Article  Google Scholar 

  25. Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170:395–410

    Article  CAS  Google Scholar 

  26. Zhao J, Buldum A, Han J, Lu JP (2002) Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13(2):195–200

    Article  CAS  Google Scholar 

  27. Shirvani BB, Beheshtian J, Esrafili MD, Hadipour NL (2010) DFT study of NH3 adsorption on the (5,0), (8,0), (5,5) and (6,6) single-walled carbon nanotubes calculated binding energies, NMR and NQR parameters. Phys B 405:1455–1460

    Article  CAS  Google Scholar 

  28. Frank B, Zhang J, Blume R, Schlüogl R, Su D (2009) Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons. Angew Chem Int Ed 48:6913–6917

    Article  CAS  Google Scholar 

  29. Ayala P, Arenal R, Rüummeli M, Rubio A, Pichler T (2010) The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 48:575–586

    Article  CAS  Google Scholar 

  30. Lin YH, Lu F, Tu Y, Ren ZF (2004) Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett 4:191–195

    Article  CAS  Google Scholar 

  31. Naray-Szabo G, Ferenczy GG (1995) Molecular electrostatics. Chem Rev 95:829–847

    Article  CAS  Google Scholar 

  32. Sauer J, Ugliengo P, Garrone E, Saunders VR (1994) Theoretical study of van der Waals complexes at surface sites in comparison with the experiment. Chem Rev 94:2095–2160

    Article  CAS  Google Scholar 

  33. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  34. Murray JS, Peralta-Inga Z, Politzer P (2000) Computed molecular surface electrostatic potentials of the nonionic and zwitterionic forms of glycine, histidine, and tetracycline. Int J Quantum Chem 80:1216–1223

    Article  CAS  Google Scholar 

  35. Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors. J Mol Model 13:643–650

    Article  CAS  Google Scholar 

  36. Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) Br · · · O complexes as probes of factors affecting halogen bonding: interactions of bromobenzenes and bromopyrimidines with acetone. J Chem Theory Comput 5:155–163

    Article  CAS  Google Scholar 

  37. Esrafili MD (2012) Investigation of H-bonding and halogen-bonding effects in dichloroacetic acid: DFT calculations of NQR parameters and QTAIM analysis. J Mol Model 18:5005–5016

    Article  CAS  Google Scholar 

  38. Esrafili MD (2013) A theoretical investigation of the characteristics of hydrogen/ halogen bonding interactions in dibromo-nitroaniline. J Mol Model 19:1417–1427

    Article  CAS  Google Scholar 

  39. Peralta-Inga Z, Lane P, Murray JS, Boyd S, Grice ME, O’Connor CJ, Politzer P (2003) Characterization of surface electrostatic potentials of some (5,5) and (n,1) carbon and boron/nitrogen model nanotubes. Nano Lett 3:21–28

    Article  CAS  Google Scholar 

  40. Politzer P, Lane P, Murray JS, Concha MC (2005) Comparative analysis of surface electrostatic potentials of carbon, boron/nitrogen and carbon/boron/nitrogen model nanotubes. J Mol Model 11:1–7

    Article  CAS  Google Scholar 

  41. Politzer P, Murray JS, Lane P, Concha MC, Jin P, Peralta-Inga Z (2005) An unusual feature of end-substituted model carbon (6,0) nanotubes. J Mol Model 11:258–264

    Article  CAS  Google Scholar 

  42. Esrafili MD, Behzadi H (2013) A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies. J Mol Model 19:2375–2382

    Article  CAS  Google Scholar 

  43. Esrafili MD (2013) Nitrogen-doped (6, 0) carbon nanotubes: a comparative DFT study based on surface reactivity descriptors. Comput Theor Chem 1015:1–7

    Article  CAS  Google Scholar 

  44. Dinadayalane TC, Murray JS, Concha MC, Politzer P, Leszczynski J (2010) Reactivities of sites on (5,5) single-walled carbon nanotubes with and without a Stone-Wales defect. J Chem Theory Comput 6:1351–1357

    Article  CAS  Google Scholar 

  45. Saha S, Dinadayalane TC, Murray JS, Leszczynska D, Leszczynski J (2012) Surface reactivity for chlorination on chlorinated (5,5) armchair SWCNT: a computational approach. J Phys Chem C 116:22399–22410

    Article  CAS  Google Scholar 

  46. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  47. Politzer P, Murray JS, Sen KD (1996) Molecular electrostatic potentials: concepts and applications. Elsevier, Amsterdam

    Google Scholar 

  48. Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Average local ionization energies on the molecular surfaces of aromatic systems as guides to chemical reactivity. Can J Chem 68:1440–1443

    Article  CAS  Google Scholar 

  49. Politzer P, Murray JS, Bulat FA (2010) Average local ionization energy: a review. J Mol Model 16:1731–1742

    Article  CAS  Google Scholar 

  50. Politzer P, Murray JS, Peralta-Inga Z (2010) Molecular surface electrostatic potentials in relation to noncovalent interactions in biological systems. Int J Quantum Chem 85:676–684

    Article  Google Scholar 

  51. Brinck T, Murray JS, Politzer P (1992) Quantitative determination of the total local polarity (charge separation) in molecules. Mol Phys 76:609–617

    Article  CAS  Google Scholar 

  52. Esrafili MD (2013) Electronic structure and surface reactivity of BC3 nanotubes from first-principle calculations. Struct Chem. doi:10.1007/s11224-013-0269-2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi D. Esrafili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alizadeh, M., Esrafili, M.D. & Vessally, E. Exploring surface reactivity of phosphorous-doped (6,0) and (4,4) BC3 nanotubes: a DFT study. J Mol Model 19, 4877–4886 (2013). https://doi.org/10.1007/s00894-013-1978-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1978-6

Keywords

Navigation