Skip to main content
Log in

Theoretical investigation on the kinetics and branching ratio of the gas phase reaction of sevoflurane with Cl atom

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The present work deals with the theoretical investigation on the Cl initiated H-atom abstraction reaction of sevoflurane, (CF3)2CHOCH2F. A dual-level procedure has been adopted for studying the kinetics of the reaction. Geometrical optimization and frequency calculation were performed at DFT(BHandHLYP)/6-311G(d,p) while single-point energy calculation was made at CCSD(T)/6-311G(d,p) level of theory. The intrinsic reaction coordinate (IRC) calculation has also been performed to confirm the smooth transition from the reactant to product through the respective transition state. The rate constants were calculated using conventional transition state theory (TST). It has been found that 99 % of the reaction proceeded via the H-atom abstraction from the –CH2F end of the sevoflurane. The rate constant of the dominant path is found to be 1.13 × 10−13 cm3 molecule−1 s−1. This is in excellent agreement with the reported experimental rate constant of 1.10 × 10−13 cm3 molecule−1 s−1 obtained by relative rate method using FTIR/Smog chamber and LP/LIF techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmermann P (1995) J Geophys Res 100:8873–8892

    Article  CAS  Google Scholar 

  2. Sawyer RF, Harley RA, Cadle SH, Norbeck JM, Slott R, Bravo HA (2000) Atoms Environ 34:2161–2181

    Article  CAS  Google Scholar 

  3. Placet M, Mann CO, Gilbert RO, Niefer MJ (2000) Atoms Environ 34:2183–2204

    Article  CAS  Google Scholar 

  4. Guenther A, Geron C, Pierce T, Lamb B, Harley P, Fall R (2000) Atoms Environ 34:2205–2230

    Article  CAS  Google Scholar 

  5. Atkinson R, Arey J (2003) Chem Rev 103:4605–4638

    Article  CAS  Google Scholar 

  6. Sulbaek Andersen MP, Sander SP, Nielsen OJ, Wagner DS, Sanford TJ Jr, Wallington TJ (2010) Br J Anaesth 105:760–766

    Article  CAS  Google Scholar 

  7. Wallington TJ, Hurley MD, Fedotov V, Morrell C, Hancock G (2002) J Phys Chem A 106:8391–8398

    Article  CAS  Google Scholar 

  8. Sulbaek Andersen MP, Nielsen OJ, Karpichev B, Wallington TJ, Sander SP (2012) J Phys Chem A 116:5806–5820

    Article  CAS  Google Scholar 

  9. Dalmasso P, Taccone R, Nieto J, Teruel M, Lane S (2006) Atmos Environ 40:7298–7307

    Article  CAS  Google Scholar 

  10. Wingenter OW, Kubo MK, Blake NJ, Smith TW, Blake DR, Rowland FS (1996) J Geophys Res 101:4331–4340

    Article  CAS  Google Scholar 

  11. Freitas MP, Buhl M, Hagan DO, Cormanich RA, Tormena CF (2012) J Phys Chem A 116:1677–1682

    Article  CAS  Google Scholar 

  12. Lesarri A, Vega-Toribio A, Suenram RD, Brugh DJ, Grabow JU (2010) Phys Chem Chem Phys 12:9624–9631

    Article  CAS  Google Scholar 

  13. Tang P, Zubryzcki I, Xu Y (2001) J Comput Chem 22:436–444

    Article  CAS  Google Scholar 

  14. Truhlar DG (1995) In: Heidrich D (ed) The reaction path in chemistry: current approaches and perspectives. Kluwer, Dordrecht

  15. Hu WP, Truhlar DG (1996) J Am Chem Soc 118:860–869

    Article  CAS  Google Scholar 

  16. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem A 100:12771–12800

    Article  CAS  Google Scholar 

  17. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  18. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  19. Frisch MJ et al. (2010) Gaussian 09 (Version C.01). Gaussian Inc, Wallingford

    Google Scholar 

  20. Peng C, Schlegel HB (1993) Isr J Chem 33:449

    CAS  Google Scholar 

  21. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comput Chem 17:49–56

    Article  CAS  Google Scholar 

  22. Gonzales C, Schlegel HB (1990) J Chem Phys 94:5523–5527

    Article  Google Scholar 

  23. Gonzales C, Schlegel HB (1991) J Chem Phys 95:5853–5860

    Article  Google Scholar 

  24. Wu Q, Zhu W, Xiao H (2013) J Mol Model 19:2945–2954

    Article  CAS  Google Scholar 

  25. Lide DR (ed) (1994) CRC Handbook of Chemistry and Physics, 75th edn. CRC, New York

    Google Scholar 

  26. Fischer H, Radom L (2001) Angew Chemie Int Ed 40:1340–1371

    Article  CAS  Google Scholar 

  27. Sun H, Gong H, Pan X, Hao L, Sun CC, Wang R, Huang X (2009) J Phys Chem A 113:5951–5957

    Article  CAS  Google Scholar 

  28. Song G, Jia X, Gao Y, Luo J, Yu Y, Wang R, Pan X (2010) J Phys Chem A 114:9057–9068

    Article  CAS  Google Scholar 

  29. Johnson RD (ed) (2011) NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database 101, Release 15b, August 2011. http://cccbdb.nist.gov/

  30. Frisch A, Nielsen AB, Holder AJ et al. (2009) Gauss-View 05. Gaussian Inc, Wallingford, CT

  31. Laidler KJ (2004) Chemical Kinetics, 3rd edn. Pearson Education, New Delhi

    Google Scholar 

  32. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771–12800

    Article  CAS  Google Scholar 

  33. Wigner EP (1932) Z Phys Chem B19:203–216

    CAS  Google Scholar 

  34. Chase MW Jr, Davies CA, Downey JR Jr, Frurip DJ, McDonald RA, Syverud AN (1985) JANAF thermochemical tables. J Phys Chem Ref Data 14: Suppl 1, 3rd edn

Download references

Acknowledgments

Authors are thankful to Council of Scientific and Industrial Research (CSIR), New Delhi for providing financial assistance during the course of the present investigation. PKR is thankful to University Grants Commission, New Delhi for providing Rajiv Gandhi National Fellowship (RGNF). Authors are also thankful to UP State Government for providing a grant under its Center of Excellence program and to UGC under SAP program for establishing the computational lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Ji Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, H.J., Gour, N.K., Rao, P.K. et al. Theoretical investigation on the kinetics and branching ratio of the gas phase reaction of sevoflurane with Cl atom. J Mol Model 19, 4815–4822 (2013). https://doi.org/10.1007/s00894-013-1977-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1977-7

Keywords

Navigation