Skip to main content
Log in

Competition between hydrogen bonds and halogen bonds in complexes of formamidine and hypohalous acids

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Quantum chemical calculations have been per-formed for the complexes of formamidine (FA) and hypohalous acid (HOX, X = F, Cl, Br, I) to study their structures, properties, and competition of hydrogen bonds with halogen bonds. Two types of complexes are formed mainly through a hydrogen bond and a halogen bond, respectively, and the cyclic structure is more stable. For the F, Cl, and Br complexes, the hydrogen-bonded one is more stable than the halogen-bonded one, while the halogen-bonded structure is favorable for the I complexes. The associated H-O and X-O bonds are elongated and exhibit a red shift, whereas the distant ones are contracted and display a blue shift. The strength of hydrogen and halogen bonds is affected by F and Li substitutents and it was found that the latter tends to smooth differences in the strength of both types of interactions. The structures, properties, and interaction nature in these complexes have been understood with natural bond orbital (NBO) and atoms in molecules (AIM) theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Scheiner S (1997) Hydrogen bonding: a theoretical perspecitive. Oxford University Press, New York

    Google Scholar 

  2. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  3. Czyznikowska Z (2009) J Mol Struct: THEOCHEM 895:161–167

    Article  CAS  Google Scholar 

  4. Scheiner S (2013) Int J Quantum Chem 113:1609–1620

    Article  CAS  Google Scholar 

  5. Gilday LC, Lang T, Caballero A, Costa PJ, Felix V, Beer PD (2013) Angew Chem, Int Ed 52:4356–4360

    Article  CAS  Google Scholar 

  6. Jentzsch AV, Matile S (2013) J Am Chem Soc 135:5302–5303

    Article  Google Scholar 

  7. Khavasi HR, Tehrani AA (2013) Inorg Chem 52:2891–2905

    Article  CAS  Google Scholar 

  8. Ormond-Prout JE, Smart P, Brammer L (2012) Cryst Growth Des 12:205–216

    Article  CAS  Google Scholar 

  9. El-Sheshtawy HS, Bassil BS, Assaf KI, Kortz U, Nau WM (2012) J Am Chem Soc 134:19935–19941

    Article  CAS  Google Scholar 

  10. Meazza L, Foster JA, Fucke K, Metrangolo P, Resnati G, Steed JW (2013) Nat Chem 5:42–47

    Article  CAS  Google Scholar 

  11. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  12. Del Bene JE, Alkorta I, Elguero J (2010) J Phys Chem A 114:12958–12962

    Article  Google Scholar 

  13. Palusiak M (2010) J Mol Struct: THEOCHEM 945:89–92

    Article  CAS  Google Scholar 

  14. Zou JW, Jiang YJ, Guo M, Hu GX, Zhang B, Liu HC, Yu QS (2005) Chem Eur J 11:740–751

    Article  CAS  Google Scholar 

  15. Tian WK, Miao Q, Li QZ, Li WZ, Cheng JB (2013) Comput Theor Chem 1012:41–46

    Article  CAS  Google Scholar 

  16. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  17. Stone AJ (2013) J Am Chem Soc 135:7005–7009

    Article  CAS  Google Scholar 

  18. Tomura M (2009) Chem Phys 359:126–131

    Article  CAS  Google Scholar 

  19. Raghavendra B, Arunan E (2007) J Phys Chem A 111:9699–9706

    Article  CAS  Google Scholar 

  20. Chudzinski MG, McClary CA, Taylor MS (2011) J Am Chem Soc 133:10559–10567

    Article  CAS  Google Scholar 

  21. Lipkowski P, Grabowski SJ, Leszczynski J (2006) J Phys Chem A 110:10296–10302

    Article  CAS  Google Scholar 

  22. Li QZ, Wang YL, Liu ZB, Li WZ, Cheng JB, Gong BA, Sun JZ (2009) Chem Phys Lett 469:48–51

    Article  CAS  Google Scholar 

  23. Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G, Terraneo G (2011) CrystEngComm 13:6593–6596

    Article  CAS  Google Scholar 

  24. Bouchmella K, Boury B, Dutremez SG, van der Lee A (2007) Chem Eur J 13:6130–6138

    Article  CAS  Google Scholar 

  25. Aakeroy CB, Fasulo M, Schultheiss N, Desper J, Moore C (2007) J Am Chem Soc 129:13772–13773

    Article  Google Scholar 

  26. Francisco JS, Sander SP (1993) J Chem Phys 99:6219–6220

    Article  CAS  Google Scholar 

  27. Molina MJ, Rowland FS (1974) Nature 249:810–812

    Article  CAS  Google Scholar 

  28. Rowland FS, Molina MJ (1975) Rev Geophys Space Phys 13:1–35

    Article  CAS  Google Scholar 

  29. Thomas E (1979) Infect Immun 23:522–531

    CAS  Google Scholar 

  30. Roos D, Winterbourn CC (2002) Science 296:669–671

    Article  CAS  Google Scholar 

  31. Yang YC, Lu HH, Wang WT, Liau I (2011) Anal Chem 83:8267–8272

    Article  CAS  Google Scholar 

  32. Cheng XH, Jia HZ, Long T, Feng J, Qin JG, Li Z (2011) Chem Commun 47:11978–11980

    Article  CAS  Google Scholar 

  33. Solimannejad M, Alkorta I (2008) Chem Phys Lett 454:201–206

    Article  CAS  Google Scholar 

  34. Yuan K, Liu YZ, Zhu YC, Zhang J, Zhang JY (2009) Acta Chin Sin 67:499–506

    CAS  Google Scholar 

  35. Yuan K, Liu YZ, Lue LL, Ma WC (2008) Acta Chin Sin 24:1257–1263

    CAS  Google Scholar 

  36. Yuan K, Liu YZ, Ma WC, Tang HA, Zhu YC, Zhang J (2009) Chi J Chem 27:900–906

    Article  CAS  Google Scholar 

  37. Li ZF, Wang XY, Tang HA, Zhu YC, Li HY (2009) Chem J Chin Univ 30:92–95

    CAS  Google Scholar 

  38. Li ZF, Li HY, Liu YZ, Shi XN, Tang HA (2009) Chin Chem Bull 54:3014–3022

    Article  CAS  Google Scholar 

  39. Alkorta I, Blanco F, Solimannejad M, Elguero J (2008) J Phys Chem A 112:10856–10863

    Article  CAS  Google Scholar 

  40. Li Q, Xu X, Liu T, Jing B, Li W, Cheng J, Gong B, Sun JC (2010) Phys Chem Chem Phys 12:6837–6843

    Article  CAS  Google Scholar 

  41. Li QZ, Jing B, Li R, Liu ZB, Li WZ, Luan F, Cheng JB, Gong BA, Sun JZ (2011) Phys Chem Chem Phys 13:2266–2271

    Article  CAS  Google Scholar 

  42. Li QZ, Zhao JL, Jing B, Li R, Li WZ, Cheng JB (2011) J Comput Chem 32:2432–2440

    Article  CAS  Google Scholar 

  43. Blanco F, Alkorta I, Solimannejad M, Elguero J (2009) J Phys Chem A 113:3237–3244

    Article  CAS  Google Scholar 

  44. Zhao Q, Feng D, Sun Y, Hao J, Cai Z (2011) J Mol Model 17:1935–1939

    Article  CAS  Google Scholar 

  45. Zabaradsti A, Kakanejadifard A, Ghasemian M (2012) Comput Theor Chem 989:1–6

    Article  CAS  Google Scholar 

  46. Zhang ZF, Shen J, Jin NZ, Chen LP, Yang ZY (2012) Comput Theor Chem 999:48–54

    Article  CAS  Google Scholar 

  47. Panek JJ, Berski S (2008) Chem Phys Lett 467:41–45

    Article  CAS  Google Scholar 

  48. Roohi H, Nowroozi A, Eshghi F (2010) Int J Quantum Chem 110:1489–1499

    CAS  Google Scholar 

  49. Greenhill JV, Lue P (1993) Prog Med Chem 30:203–326, and references cited herein

    Google Scholar 

  50. Hollingworth RM (1976) Environ Health Persp 14:57–69

    Article  CAS  Google Scholar 

  51. Lim JH, Lee EK, Kim Y (1997) J Phys Chem A 101:2233–2239

    Article  CAS  Google Scholar 

  52. Kim Y, Lim S, Kim Y (1999) J Phys Chem A 103:6632–6637

    Article  CAS  Google Scholar 

  53. Walewski L, Smaga A, Lesyng B, Sadlej J (2012) J Phys Chem A 116:10412–10419

    Article  CAS  Google Scholar 

  54. Li P, Bu YX, Ai HQ, Yan SH, Han KL (2004) J Phys Chem B 108:16976–16982

    Article  CAS  Google Scholar 

  55. Bell RL, Truong TN (1994) J Chem Phys 101:10442–10451

    Article  CAS  Google Scholar 

  56. Siegbahn PEM, BlombergM RA, Crabtree RH (1997) Theor Chem Acc 97:289–300

    Article  CAS  Google Scholar 

  57. Boys SF, Bernardi F (1970) Mol Phys 19:553–558

    Article  CAS  Google Scholar 

  58. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09, Revision A.02. Gaussian Inc, Wallingford

    Google Scholar 

  59. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  60. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford, UK

    Google Scholar 

  61. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  62. Murray JS, Politzer P (2013) ChemPhysChem 14:278–294

    Article  Google Scholar 

  63. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  64. Berski S, Silvi B, Latajka Z, Leszczynski J (1999) J Chem Phys 111:2542–2555

    Article  CAS  Google Scholar 

  65. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Comp Theor Chem 998:2–8

    Article  CAS  Google Scholar 

  66. Koch U, Popelier PLA (1995) J Phys Chem A 99:9747–9754

    Article  CAS  Google Scholar 

  67. Lipkowski P, Grabowski SJ, Robinson TL, Leszczynski J (2004) J Phys Chem A 108:10865–10872

    Article  CAS  Google Scholar 

  68. Arnold WD, Oldfield E (2000) J Am Chem Soc 122:12835–12841

    Article  CAS  Google Scholar 

  69. Espinosa E, Molins E, Lecomte C (1998) Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20973149), the Outstanding Youth Natural Science Foundation of Shandong Province (JQ201006), and the Program for New Century Excellent Talents in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, X., Zhuo, H., Wang, Y. et al. Competition between hydrogen bonds and halogen bonds in complexes of formamidine and hypohalous acids. J Mol Model 19, 4529–4535 (2013). https://doi.org/10.1007/s00894-013-1969-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1969-7

Keywords

Navigation