Skip to main content
Log in

A comparison of diamino- and diamidocarbenes toward dimerization

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, we compare the dimerization of N,N’-diamidocarbene with that of N-heterocyclic carbene (NHC). Less interaction occurred between the filled lone pair of nitrogen and the unfilled lone pair of the carbenic center for a N,N’-diamdiocarbene than did in a saturated NHC because of the resonance between the lone pair of nitrogen and a carbonyl group. Therefore, a N,N’-diamidocarbene exhibits less singlet-triplet splitting. The less singlet-triplet splitting in a heterocyclic carbene containing nitrogen, the more exothermic the dimerization, which is consistent with the conclusion of Thiel et al. (Chem Phys Lett 217:11–16, 1994).

In this study, we compare the dimerization of N,N’-diamidocarbene with that of N-heterocyclic carbene. The interaction between the filled lone pair of nitrogen and the unfilled lone pair of the carbenic center becomes lower for a N,N’-diamdiocarbene when comparing with that of a saturated N-heterocyclic carbene because of the resonance between the lone pair of nitrogen and a carbonyl group. Therefore, a N,N’-diamidocarbene has a smaller singlet-triplet splitting. The smaller the singlet-triplet splitting of a heterocyclic carbene containing nitrogen, the more exothermic the dimerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Scheme 5
Scheme 6
Scheme 7
Scheme 8

Similar content being viewed by others

References

  1. Kirmse W (1971) Carbene chemistry, 2nd edn. Academic Press, Inc. New York

    Google Scholar 

  2. Arduengo AJ III, Harlow RL, Kline MA (1991) Stable crystalline carbene. J Am Chem Soc 113:361–363

    Article  CAS  Google Scholar 

  3. Dixon DA, Arduengo AJ III (1991) Electronic structure of a stable nucleophilic carbene. J Phys Chem 95:4180–4182

    Article  CAS  Google Scholar 

  4. Arduengo AJ III, Dias HVR, Dixon DA, Harlow RL, Klooster WT, Koetzle TF (1994) Electron distribution in a stable carbene. J Am Chem Soc 116:6812–6822

    Article  CAS  Google Scholar 

  5. Arduengo AJ III, Bock H, Chen H, Denk M, Dixon DA, Green JC, Herrmann WA, Jones NJ, Wagner M, West R (1994) Photoelectron spectroscopy of a carbene/silylene/germylene series. J Am Chem Soc 116:6641–6649

    Article  CAS  Google Scholar 

  6. Arduengo AJ III, Dixon DA, Kumashiro KK, Lee C, Power WP, Zilm KW (1994) Chemical shielding tensor of a carbene. J Am Chem Soc 116:6361–6367

    Article  CAS  Google Scholar 

  7. Heinemann C, Thiel W (1994) Ab initio study on the stability of diaminocarbenes. Chem Phys Lett 217:11–16

    Article  CAS  Google Scholar 

  8. Heinemann C, Müller T, Apeloig Y, Schwarz H (1996) On the question of stability, conjugation, and “aromaticity” in imidazol-2-ylidenes and their silicon analogs. J Am Chem Soc 118:2023–2028

    Article  CAS  Google Scholar 

  9. Cheng M-J, Hu C-H (2000) A computational study on the stability of diaminocarbenes. Chem Phys Lett 322:83–90

    Article  CAS  Google Scholar 

  10. Cheng M-J, Hu C-H (2001) Computational study on the stability of imidazol-2-ylidenes and imidazolin-2-ylidenes. Chem Phys Lett 329:477–482

    Article  Google Scholar 

  11. Arduengo AJ III, Goerlich JR, Marshall WJ (1995) A stable diaminocarbene. J Am Chem Soc 117:11027–11028

    Article  CAS  Google Scholar 

  12. Hahn FE, Wittenbecher L, Van DL, Fröhlich R (2000) Evidence for an equilibrium between an N-heterocyclic carbene and its dimer in solution. Angew Chem Int Ed Engl 39:541–544

    Article  CAS  Google Scholar 

  13. Taton TA, Chen P (1996) A stable Tetraazafulvalene. Angew Chem Int Ed Engl 35:1011–1013

    Article  CAS  Google Scholar 

  14. Arduengo AJ III, Dias HVR, Calabrese JC, Davidson F (1993) A carbene-GeI2 adduct: model of the non-least-motion pathway for dimerization of singlet carbenes. Inorg Chem 32:1541–1542

    Article  CAS  Google Scholar 

  15. Alder RW, Blake ME, Chaker L, Harvey JN, Paolini F, Schütz J (2004) When and how do diaminocarbenes dimerize? Angew Chem Int Ed Engl 43:5896–5911

    Article  CAS  Google Scholar 

  16. Graham DC, Cavell KJ, Yates BF (2005) Dimerization mechanisms of heterocyclic carbenes. J Phys Organ Chem 18:298–309

    Article  CAS  Google Scholar 

  17. Hahn FE, Paas M, Van DL, Fröhlich R (2005) Spirocyclic diaminocarbenes: synthesis, coordination chemistry, and investigation of their dimerization behavior. Chem Eur J 11:5080–5085

    Article  CAS  Google Scholar 

  18. Poater A, Ragone F, Giudice S, Costabile C, Dorta R, Nolan SP, Cavallo L (2008) Thermodynamics of N-heterocyclic carbene dimerization: the balance of sterics and electronics. Organomet 27:2679–2681

    Article  CAS  Google Scholar 

  19. Enders D, Balensiefer T (2004) Nucleophilic carbenes in asymmetric organocatalysis. Acc Chem Res 37:534–541

    Article  CAS  Google Scholar 

  20. Herrmann WA, Weskamp T, Böhm VPW (2002) Metal complexes of stable carbenes. Adv Organomet Chem 48:1–69

    Article  Google Scholar 

  21. Huang J, Schanz H-J, Stevens ED, Nolan SP (1999) Stereoelectronic effects characterizing nucleophilic carbene ligands bound to the Cp*RuCl (Cp* = η5-C5Me5) moiety: a structural and thermochemical investigation. Organomet 18:2370–2375

    Article  CAS  Google Scholar 

  22. Nemcsok D, Wichmann K, Frenking G (2004) The significance of π interactions in group 11 complexes with N-heterocyclic carbenes. Organomet 23:3640–3646

    Article  CAS  Google Scholar 

  23. Sanderson MD, Camplain JW, Bielawski CW (2006) Quinone-annulated N-heterocyclic carbene−transition-metal complexes: observation of π-backbonding using FT-IR spectroscopy and cyclic voltammetry. J Am Chem Soc 128:16514–16515

    Article  CAS  Google Scholar 

  24. Diez-Gonzalez S, Nolan SP (2007) Stereoelectronic parameters associated with N-heterocyclic carbene (NHC) ligands: a quest for understanding. Coord Chem Rev 251:874–883

    Article  CAS  Google Scholar 

  25. Khramov DM, Lynch VM, Bielawski CW (2007) N-heterocyclic carbene−transition metal complexes: spectroscopic and crystallographic analyses of π-back-bonding interactions. Organometallics 26:6042–6049

    Article  CAS  Google Scholar 

  26. Kausamo A, Tuononen HM, Krahulic KE, Roesler R (2008) N-heterocyclic carbenes with inorganic backbones: electronic structures and ligand properties. Inorg Chem 47:1145–1154

    Article  CAS  Google Scholar 

  27. Srebro M, Michalak A (2009) Theoretical analysis of bonding in N-heterocyclic carbene−rhodium complexes. Inorg Chem 48:5361–5369

    Article  CAS  Google Scholar 

  28. Hobbs MG, Forster TD, Borau-Garcia J, Knapp C, Tuononen HM, Roesler R (2010) The influence of electron delocalization upon the stability and structure of potential N-heterocyclic carbene precursors with 1,3-diaryl-imidazolidine-4,5-dione skeletons. New J Chem 34:1295–1308

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAM Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C.01. Gaussian, Inc Wallingford

    Google Scholar 

  30. Lai C-H Computational comparison of the kinetic stabilities of diamino- and diamidocarbenes in the 1,2-H shift reaction. J Mol Model. doi:10.1007/s00894-013-1818-8

  31. Yuan H, Cremer D (2000) The expectation value of the spin operator S2 as a diagnostic tool in coupled cluster theory: the advantages of using UHF-CCSD theory for the description of homolytic dissociation. Chem Phys Lett 324:389–402

    Article  CAS  Google Scholar 

  32. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  33. Reichman S, Schreiner F (1969) Gas–phase structure of XeF2. J Chem Phys 51:2355–2358

    Article  CAS  Google Scholar 

  34. Liao M-S, Zhang Q-E (1998) Chemical bonding in XeF2, XeF4, KrF2, KrF4, RnF2, XeCl2, and XeBr2: from the gas phase to the solid state. J Phys Chem A 102:10647–10654

    Article  CAS  Google Scholar 

  35. Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  36. Gimarc BM (1974) Applications of qualitative molecular orbital theory. Accounts Chem Res 7:384–392

    Article  CAS  Google Scholar 

  37. Gimarc BM (1970) The shapes of simple polyatomic molecules and ions. I. The series HAAH and BAAB. J Am Chem Soc 92:266–275

    Article  CAS  Google Scholar 

  38. Gimarc BM (1973) Qualitative molecular orbital study of ethane and diborane. J Am Chem Soc 95:1417–1421

    Article  CAS  Google Scholar 

  39. Gimarc BM (1980) Molecular structure and bonding. Academic Press, Inc, New York

    Google Scholar 

  40. Carter EA, Goddard WA III (1988) Correlation–consistent singlet–triplet gaps in substituted carbenes. J Chem Phys 88:1752–1763

    Article  CAS  Google Scholar 

  41. Worthington SE, Cramer CJ (1997) Density functional calculations of the influence of substitution on singlet–triplet gaps in carbenes and vinylidenes. J Phys Org Chem 10:755–767

    Article  CAS  Google Scholar 

  42. Lai C-H, Chou PT (2010) A systematic study of the stabilities of cyclic boryl anions. J Mol Model 16:713–723

    Article  CAS  Google Scholar 

  43. Triquier G, Malrieu J-P (1987) Nonclassical distortions at multiple bonds. J Am Chem Soc 109:5303–5315

    Article  Google Scholar 

  44. Hoffmann R, Gleiter R, Mallory FB (1970) Non-least-motion potential surfaces. Dimerization of methylenes and nitroso compounds. J Am Chem Soc 92:1460–1466

    Article  CAS  Google Scholar 

  45. Ohta K, Davidson ER, Morokuma K (1985) Dimerization paths of CH2 and SiH2 fragments to ethylene, disilene, and silaethylene: MCSCF and MRCI study of least- and non-least-motion paths. J Am Chem Soc 107:3466–3471

    Article  CAS  Google Scholar 

  46. Shavitt I (1985) Geometry and singlet-triplet energy gap in methylene: a critical review of experimental and theoretical determinations. Tetrahedron 41:1531–1542

    Article  CAS  Google Scholar 

  47. Alder RW, Blake ME, Oliva JM (1999) Diaminocarbenes; calculation of barriers to rotation about Ccarbene-N bonds, barriers to dimerization, proton affinities, and 13C NMR shifts. J Phys Chem A 103:11200–11211

    Article  CAS  Google Scholar 

  48. Hammond GS (1955) A correlation of reaction rates. J Am Chem Soc 77:334–338

    Article  CAS  Google Scholar 

  49. Lee Y-G, Moerdyk JP, Bielawski CW (2012) Exploring the nucleophilicity of N, N’-diamidocarbenes: heteroallenes and related compounds as coupling reagents. J Phys Org Chem 25:1027–1032

    Article  CAS  Google Scholar 

  50. Moerdyk JP, Bielawski CW (2012) Alkyne and reversible nitrile activation: N, N’-diamidocarbene-facilitated synthesis of cyclopropenes, cyclopropenones, and azirines. J Am Chem Soc 134:6116–6119

    Article  CAS  Google Scholar 

  51. Moerdyk JP, Bielawski CW (2012) Diamidocarbenes as versatile and reversible [2 + 1] cycloaddition reagents. Nat Chem 4:275–280

    Article  CAS  Google Scholar 

  52. Hudnall TW, Moerdyk JP, Bielawski CW (2010) Ammonia N–H activation by a N, N’-diamidocarbene. Chem Commun 46:4288–4290

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to the National Center for High-Performance Computing, Taiwan, for providing a generous amount of computing time. The author also thanks the National Science Council of Taiwan for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Hung Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, CH. A comparison of diamino- and diamidocarbenes toward dimerization. J Mol Model 19, 4387–4394 (2013). https://doi.org/10.1007/s00894-013-1957-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1957-y

Keywords

Navigation