Skip to main content
Log in

DFT and docking studies of rhodostreptomycins A and B and their interactions with solvated/nonsolvated Mg2+ and Ca2+ ions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The interactions of L-aminoglucosidic stereoisomers such as rhodostreptomycins A (Rho A) and B (Rho B) with cations (Mg2+, Ca2+, and H+) were studied by a quantum mechanical method that utilized DFT with B3LYP/6-311G**. Docking studies were also carried out in order to explore the surface recognition properties of L-aminoglucoside with respect to Mg2+ and Ca2+ ions under solvated and nonsolvated conditions. Although both of the stereoisomers possess similar physicochemical/antibiotic properties against Helicobacter pylori, the thermochemical values for these complexes showed that its high affinity for Mg2+ cations caused the hydration of Rho B. According to the results of the calculations, for Rho A–Ca2+(H2O)6, ΔH = −72.21 kcal mol−1; for Rho B–Ca2+(H2O)6, ΔH = −72.53 kcal mol−1; for Rho A–Mg2+(H2O)6, ΔH = −72.99  kcal mol−1 and for Rho B–Mg2+(H2O)6, ΔH = −95.00  kcal mol−1, confirming that Rho B binds most strongly with hydrated Mg2+, considering the energy associated with this binding process. This result suggests that Rho B forms a more stable complex than its isomer does with magnesium ion. Docking results show that both of these rhodostreptomycin molecules bind to solvated Ca2+ or Mg2+ through hydrogen bonding. Finally, Rho B is more stable than Rho A when protonation occurs.

Rho B–H showed higher stability since it is considered a proton pump inhibitor, and is therefore a stronger inhibitor of Helicobacter pylori

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kurosawa K, Ghiviriga I, Sambandan TG, Lessard PA, Barbara JE, Rha C, Sinskey AJ (2008) Rhodostreptomycins, antibiotics biosynthesized following horizontal gene transfer from Streptomyces padanus to Rhodococcus fascians. J Am Chem Soc 130:1126–1127

    Google Scholar 

  2. Edwards BK, Ward E, Kohler BA, Eheman C, Zauber AG, Anderson RN, Jemal A, Schymura MJ, Lansdorp-Vogelaar I, Seeff LC, van Ballegooijen M, Goede SL, Ries LAG (2010) Annual report to the nation on the status of cancer, 1975–2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer 116:544–573

    Article  Google Scholar 

  3. Dutch DS, Gary SK (2003) Biosynthesis and functioning of tetrahydrobiopterin. J Nutr Biochem 2:411–423

    Google Scholar 

  4. Tillman JA, Seybold SJ, Jurenka RA, Blomquist GA (1999) Insect pheromones—an overview of biosynthesis and endocrine regulation. Insect Biochem Mol Biol 29:481–514

    Google Scholar 

  5. Pirrung MC, Cao J, Chen J (1998) Ethylene biosynthesis: processing of a substrate analog supports a radical mechanism for the ethylene-forming enzyme. Chem Biol 5:49–57

    Article  CAS  Google Scholar 

  6. Piaggesia A, Picciarellia P, Ceccarellia N, Lorenzi R (1998) Cytokinin biosynthesis in endosperm of Sechium edule Sw. Plant Sci 129:131–140

    Article  Google Scholar 

  7. Kamiya Y, García-Martínez JL (1999) Regulation of gibberellin biosynthesis by light. Curr Opin Plant Biol 2:398–403

    Article  CAS  Google Scholar 

  8. Nora GP, Miller MJ, Möllmann U (2006) The synthesis and in vitro testing of structurally novel antibiotics derived from acylnitroso Diels–Alder adducts. Bioorg Med Chem Lett 16:3966–3970

    Article  CAS  Google Scholar 

  9. Kennedy AD, DeLeo FR (2009) Epidemiology and virulence of community-associated MRSA. Clin Microbiol Newsl 31:153–160

    Article  Google Scholar 

  10. Lafuente RF, Rosell CM, Piatkowska B, Guisán JM (1995) Synthesis of antibiotics (cephaloglycin) catalyzed by penicillin G acylase: evaluation and optimization of different synthetic approaches. Enz Microb Technol 17:517–523

    Article  Google Scholar 

  11. Herrero IA, Teshager T, Garde J, Moreno MA, Domínguez L (2000) Prevalence of vancomycin-resistant Enterococcus faecium (VREF) in pig faeces from slaughterhouses in Spain. Prev Vet Med 47:255–262

    Google Scholar 

  12. Habeck M (2002) Spying on nature’s drug factories. Drug Discovery Today 7:1109–1110

    Article  Google Scholar 

  13. Hutchinson CR (1998) Combinatorial biosynthesis for new drug discovery. Curr Opin Microbiol 1:319–329

    Article  CAS  Google Scholar 

  14. Foubister V (2003) Scientists expand the genetic code drug discovery. Today 8:239–840

    Google Scholar 

  15. Andersson C, Lönnroth C, Moldawer LL, Ternell M, Lundholm K (1990) Increased degradation of albumin in cancer is not due to conformational or chemical modifications in the albumin molecule. J Surg Res 49:23–29

    Article  CAS  Google Scholar 

  16. Sitaram N, Subbalakshmi C, Nagaraj R (2003) A 13-residue basic antimicrobial peptide rich in tryptophan and proline interacts with Ca2+-calmodulin. Biochem Biophys Res Commun 309:879–884

    Google Scholar 

  17. Kwon HJ, Lee GY (2008) A DFT study on magnesium ion affinity of glycine. J Korean Chem Society 52:207–211

    Google Scholar 

  18. Rasul R, Cole N, Balasubramanian D, Chen R, Kumar N, Willcox P (2010) Interaction of the antimicrobial peptide melimine with bacterial membranes. Int J Antimicrob Agents 35:566–572

    Article  CAS  Google Scholar 

  19. Lin T-S, Fishman E (1967) Enthalpies of intramolecular hydrogen bonds of orthohalophenols and deuterated orthohalophenols in the vapor phase. Spectrochim Acta Part A 23:491–500

    Google Scholar 

  20. Shoyele SA, Cawthorne S (2006) Particle engineering techniques for inhaled biopharmaceuticals. Adv Drug Deliv Rev 58:1009–1029

    Article  CAS  Google Scholar 

  21. Walsh G (2004) Second-generation biopharmaceuticals. Eur J Pharm Biopharm 58:185–196

    Article  CAS  Google Scholar 

  22. Loria CJ, Echeverria P, Smith AL (1976) Effect of antibiotic formulations in serum protein: bilirubin interaction of newborn infants. J Pediatr 89:479–482

    Article  CAS  Google Scholar 

  23. Nogimori K, Tamura M, Yajima M, Ito K, Nakamura T, Kajikawa N, Maruyama Y, Ui M (1984) Dual mechanisms involved in development of diverse biological activities of islet-activating protein, pertussis toxin, as revealed by chemical modification of lysine residues in the toxin molecule. Biochim Biophy Acta 801:232–243

    Article  CAS  Google Scholar 

  24. Yamniuk AP, Vogel HJ (2005) Calcium and magnesium-dependent interactions between calcium- and integrin-binding protein and the integrin αIIb cytoplasmic domain. Protein Sci 14:1429–1437

    Article  CAS  Google Scholar 

  25. Chan KW, Wu Y, Liu ZF (2008) Solvation effects on the intracluster elimination channels in M+(L)n, where M+ = Mg+ and Ca+, L = CH3OH, and NH3, and n = 2–6). J Phys Chem A 112:8542–8550

    Google Scholar 

  26. Martin-Garcia JM, Ruiz-Sanz J, Luque I (2012) Interfacial water molecules in SH3 interactions: a revised paradigm for polyproline recognition. Biochem J 442:443–451

    Article  CAS  Google Scholar 

  27. Gresh N, De Courcy B, Piquemal JP, Foret J, Courtiol-Legourd S, Salmon L (2011) Polarizable water networks in ligand-metalloprotein recognition. Impact on the relative complexation energies of Zn-dependent phosphomannose isomerase with D-mannose 6-phosphate surrogates. J Phys Chem B 115:8304–8316

    Google Scholar 

  28. Samsonov SA, Teyra J, Pisabarro MT (2011) Docking glycosaminoglycans to proteins: analysis of solvent inclusion. J Comput Aided Mol Des 25:477–489

    Article  CAS  Google Scholar 

  29. Frisch MJ et al (2011) GAUSSIAN 09, revision B.01. Gaussian Inc., Wallingford

  30. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phy Rev B 37:785–789

    Google Scholar 

  31. Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation-energy density functionals of Becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  32. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Google Scholar 

  33. Courcy B, Pedersen LG, Parisel O, Gresh N, Silvi B, Pilmé J, Piquemal JP (2010) Understanding selectivity of hard and soft metal cations within biological systems using the subvalence concept. 1. Application to blood coagulation: direct cation–protein electronic effects versus indirect interactions through water networks. J Chem Theory Comput 6:1048

    Article  Google Scholar 

  34. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  35. Kahn RS, Ingold CK, Prelog V (1956) The specification of asymmetric configuration in organic chemistry. Experientia 12:81–94

    Article  Google Scholar 

  36. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Google Scholar 

  37. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  38. Han D, Namslauer A, Pawate A, Morgan JE, Nagy S, Vakkasoglu AS, Brzezinski P, Gennis RB (2006) Replacing asn207 by aspartate at the neck of the D channel in the aa 3 type cytochrome c oxidase from Rhodobacter sphaeroides results in decoupling the proton pump. Biochemistry 45:14064–14074

    Google Scholar 

  39. Kirschner KN, Bowen B, Ma JP, Duncan MA (1998) Theoretical investigation of the Ca2+–N2 and Ca2+–N2 complexes. Chem Phys Lett 295:204–210

    Article  CAS  Google Scholar 

  40. Baruah B, Swafford LA, Crans DC, Levinger NE (2008) Do probe molecules influence water in confinement? J Phys Chem B 112:10158–10164

    Article  CAS  Google Scholar 

  41. Rode BM, Schwenk CF, Hofer TS, Randolf BR (2005) Coordination and ligand exchange dynamics of solvated metal ions. Coord Chem Rev 249:2993–3006

    Article  CAS  Google Scholar 

  42. Adeagbo WA, Doltsinis NL, Burchard M, Maresch WV, Fockenberg T (2012) Ca2+ solvation as a function of p, T, and pH from ab initio simulation. J Chem Phys 37:124502

    Google Scholar 

  43. Carlotti B, Cesaretti A, Elisei F (2012) Complexes of tetracyclines with divalent metal cations investigated by stationary and femtosecond-pulsed techniques. Phys Chem Chem Phys 14:823–834

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Their access to the KanBalam supercomputer at Dirección General de Cómputo y de Tecnologías de Información y Comunicación (DGTIC-UNAM) is greatly appreciated by the authors. Secretaria de Investigación y Posgrado, Comisión de Operación y Fomento de Actividades del Instituto Politécnicos Nacional, Consejo Nacional de Ciencia y Tecnología (CONACYT) y Instituto de Ciencia y Tecnología del Distrito Federal (ICyTDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Cruz-Borbolla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jardínez, C., Nicolás-Vázquez, I., Cruz-Borbolla, J. et al. DFT and docking studies of rhodostreptomycins A and B and their interactions with solvated/nonsolvated Mg2+ and Ca2+ ions. J Mol Model 19, 4823–4836 (2013). https://doi.org/10.1007/s00894-013-1952-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1952-3

Keywords

Navigation