Skip to main content
Log in

Theoretical study on the adsorption of phenol on activated carbon using density functional theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations performed at the PBE/DZP level using the DFT-D2 method were utilized to investigate the adsorption of phenol on pristine activated carbon (AC) and on activated carbon functionalized with OH, CHO, or COOH groups. Over the pristine AC, the phenol molecule undergoes weak physical adsorption due to van der Waals interactions between the aromatic part of the phenol and the basal planes of the AC. Among the three functional groups used to functionalize the AC, the carboxylic group was found to interact most strongly with the hydroxyl group of phenol. These results suggest that functionalized AC-COOH has great potential for use in environmental applications as an adsorbent of phenol molecules in aqueous phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f
Fig. 2
Fig. 3a–d
Fig. 4
Fig. 5a–b

Similar content being viewed by others

References

  1. Fierro V, Torne-Fernandez V, Montane D, Celzard A (2008) Microporous Mesoporous Mater 111:276

    Article  CAS  Google Scholar 

  2. Aksu Z, Yener J (2001) Waste Manage 21:695

    Article  CAS  Google Scholar 

  3. Park KH, Balathanigaimani MS, Shim WG, Lee JW, Moon H (2010) Microporous Mesoporous Mater 127:1

  4. Dursun G, Cicek H, Dursun A (2005) J Hazard Mater B125:175

    Article  Google Scholar 

  5. Goncharuk VV, Kucheruk DD, Kochkodan VM, Badekha VP (2002) Desalination 143:45

    Article  CAS  Google Scholar 

  6. Kojima T, Nishijima K, Matsukata M (1995) J Membr Sci 102:43

    Article  CAS  Google Scholar 

  7. Kujawski W, Warszawski A, Ratajczak W, Porebski T, Capala W, Ostrowska I (2004) Desalination 163:287

    Article  CAS  Google Scholar 

  8. Rengaraj S, Moon SH, Sivabalan R, Arabindoo B, Murugesan V (2002) Waste Manage 22:543

    Article  CAS  Google Scholar 

  9. Bansal RC, Donnet JB, Stoeckli F (1988) Active carbon. Dekker, New York

    Google Scholar 

  10. Boehm HP (1966) Advances in catalysis, vol 16. Academic, New York

    Google Scholar 

  11. Puri BR (1970) In: Walker PJ (ed) Chemistry and physics of carbon, vol 6. Dekker, New York

    Google Scholar 

  12. Marsh H, Heintz EA, Rodriguez-Reinoso F (eds) (1997) Introduction to carbon technologies. University of Alicante, San Vicente del Raspeig

  13. Avgul NN, Kiselev AV (1970) In: Walker PJ (ed) Chemistry and physics of carbon, vol 6. Dekker, New York

    Google Scholar 

  14. Adib F, Bagreev A, Bandosz TJ (1999) J Colloid Interface Sci 216:360

    Article  CAS  Google Scholar 

  15. Adib F, Bagreev A, Bandosz TJ (2000) Langmuir 16:1980

    Article  CAS  Google Scholar 

  16. Bandosz TJ, Jagiello J, Schwarz J (1993) Langmuir 9:2518

    Article  CAS  Google Scholar 

  17. Salame II, Bandosz TJ (2003) J Colloid Interface Sci 264:307

    Article  CAS  Google Scholar 

  18. Leng CC, Pinto NG (1997) Carbon 35:1375

    Article  CAS  Google Scholar 

  19. Tessmer TH, Vidic RD, Uranowski LJ (1997) Environ Sci Technol 31:1872

    Article  CAS  Google Scholar 

  20. Franklin RE (1951) Proc R Soc A 209:196

    Article  CAS  Google Scholar 

  21. Harris PJF, Burian A, Duber S (2000) Phil Mag Lett 80:381

    Article  CAS  Google Scholar 

  22. Harris PJF (2005) Crit Rev Solid State Mater Sci 30:235

    Article  CAS  Google Scholar 

  23. Zetterstrom P, Urbonaite S, Lindberg F, Delaplane RG, Leis J, Svensson G (2005) J Phys Condens Matter 17:3509

    Article  Google Scholar 

  24. Hawelek L, Koloczek J, Brodka A, Dore JC, Honkimaeki V, Burian A (2007) Phil Mag 87:4973

    Article  CAS  Google Scholar 

  25. Harris PJF (2008) J Phys Condens Matter 20:362201

    Article  Google Scholar 

  26. Padak B, Wilcox J (2009) Carbon 47(12):2855

    Article  CAS  Google Scholar 

  27. Chen N, Yang RT (1998) Carbon 36:1061

    Article  CAS  Google Scholar 

  28. Chen N, Yang RT (1998) J Chem Phys A 102:6348

    Article  CAS  Google Scholar 

  29. Lamoen D, Persson BNJ (1998) J Chem Phys 108:3332

    Article  CAS  Google Scholar 

  30. Zhu ZH, Lu GQ (2004) Langmuir 20:10751

    Article  CAS  Google Scholar 

  31. Janiak C, Hoffmann RR, Sjovall P, Kasemo B (1993) Langmuir 9:3427

    Article  CAS  Google Scholar 

  32. Pliego JR, Resende SM, Humeres E (2005) J Chem Phys 314:127

    CAS  Google Scholar 

  33. Thomson KT, Gubbins KE (2000) Langmuir 16:5761

    Google Scholar 

  34. Terzyk AP, Furmaniak S, Gauden PA, Harris PJF, Włoch J, Kowalczyk P (2007) J Phys Condens Matter 19:406208

    Article  Google Scholar 

  35. Terzyk AP, Furmaniak S, Harris PJF, Gauden PA, Włoch J, Kowalczyk P, Rychlicki G (2007) Phys Chem Chem Phys 9:59195

    Article  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  37. Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2 5:799–805

    Article  Google Scholar 

  38. Wu X, Vargas MC, Nayak S, Lotrich V, Scoles G (2001) J Chem Phys 115:8748

    Article  CAS  Google Scholar 

  39. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  40. Zhao X, Gao B, Cai QH, Wang XG, Wang XZ (2011) Theor Chem Accounts 129:85

    Article  CAS  Google Scholar 

  41. Peyghan AA, Baei MT, Moghimi M, Hashemian S (2012) Comput Theor Chem 997:63

    Article  CAS  Google Scholar 

  42. Rokhina ER, Lahtinen M, Makarova K, Jegatheesan V, Virkutyte J (2012) Bioresour Technol 113:127–131

    Article  CAS  Google Scholar 

  43. Moreno-Castilla C, Ferro-Garcia MA, Joly JP, Bautista-Toledo I, Carrasco-Marin F, Rivera-Utrilla J (1995) Langmuir 11:4386–4392

    Article  CAS  Google Scholar 

  44. Díaz E, Ordóñez S, Vega A (2007) J Colloid Interface Sci 305:7–16

    Google Scholar 

  45. Michalska D et al (2001) J Phys Chem A 105:8734–8739

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Training and Education under project number B2011-17- 03. The authors appreciate the financial support from grants B2011-17-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Minh Cam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cam, L.M., Van Khu, L. & Ha, N.N. Theoretical study on the adsorption of phenol on activated carbon using density functional theory. J Mol Model 19, 4395–4402 (2013). https://doi.org/10.1007/s00894-013-1950-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1950-5

Keywords

Navigation