Skip to main content
Log in

Theoretical study of carbon dioxide activation by metals (Co, Cu, Ni) supported on activated carbon

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The activation of carbon dioxide (CO2) by catalytic systems comprising a transition metal (Co, Cu,Ni) on an activated carbon (AC) support was investigated using a combination of different theoretical calculation methods: Monte Carlo simulation, DFT and DFT-D, molecular dynamics (MD), and a climbing image nudged elastic band (CI-NEB) method. The results obtained indicate that CO2 is easily adsorbed by AC or MAC (M: Cu, Co, Ni). The results also showed that the process of adsorbing CO2 does not involve a transition state, and that NiAC and CoAC are the most effective of the MAC catalysts at adsorbing CO2. Adsorption on NiAC led to the strongest activation of the C–O bond, while adsorption on CuAC led to the weakest activation.

Models of CO2 activation on: a)- activated carbon; b)- metal supported activated carbon (M-AC), where M: Co, Cu, Ni

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–b
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zangeneh FT, Sahebdelfar S, Ravanchi MT (2011) Conversion of carbon dioxide to valuable petrochemicals: an approach to clean development mechanism. J Nat Gas Chem V20(3):219–231. doi:10.1016/S1003-9953(10)60191-0

    Article  Google Scholar 

  2. Arenaa F, Mezzatesta G, Zafarana G, Trunfioa G, Frusteri F, Spadaro L (2013) How oxide carriers control the catalytic functionality of the Cu–ZnO system in the hydrogenation of CO2 to methanol. Catal Today 210:39–46. doi:10.1016/j.cattod.2013.02.016

    Article  Google Scholar 

  3. Zhou G, Wu T, Xie H, Zheng X (2013) Effects of structure on the carbon dioxide methanation performance of Co-based catalysts. Int J Hydrog Energy 38:10012–10018

    Article  CAS  Google Scholar 

  4. Janke C, Duyar MS, Hoskins M, Farrauto R (2014) Catalytic and adsorption studies for the hydrogenation of CO2 to methane. Appl Catal Environ 152–153:184–191. doi:10.1016/j.apcatb.2014.01.016

  5. Karelovic A, Ruiz P (2013) CO2 hydrogenation at low temperature over Rh/γ-Al2O3 catalysts: effect of the metal particle size on catalytic performances and reaction mechanism. Appl Catal Environ 113–114:237–249. doi:10.1016/j.apcatb.2011.11.043

  6. Cai M, Wen J, Chu W, Cheng X, Li Z (2011) Methanation of carbon dioxide on Ni/ZrO2-Al2O3 catalysts: effects of ZrO2 promoter and preparation method of novel ZrO2-Al2O3 carrier. J Nat Gas Chem 20:318–324. doi:10.1016/S1003-9953(10)60187-9

  7. Graca I, González LV, Bacariza MC, Fernandes A, Henriques C, Lopes JM, Ribeiro MF (2014) CO2 hydrogenation into CH4 on NiHNaUSY zeolites. Appl Catal Environ 147:101–110. doi:10.1016/j.apcatb.2013.08.010

    Article  CAS  Google Scholar 

  8. Liu H, Zou X, Wang X, Lu X, Ding W (2012) Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen. J Nat Gas Chem 21:703–707. doi:10.1016/S1003-9953(11)60422-2

    Article  CAS  Google Scholar 

  9. Zhou G, Wu T, Xie H, Zheng X (2013) Effects of structure on the carbon dioxide methanation performance of Co-based catalysts. Int J Hydrog Energy 38:10012–10018. doi:10.1016/j.ijhydene.2013.05.130

    Article  CAS  Google Scholar 

  10. Jwa E, Lee SB, Lee HW, Mok YS (2013) Plasma-assisted catalytic methanation of CO and CO2 over Ni–zeolite catalysts. Fuel Process Technol 108:89–93. doi:10.1016/j.fuproc.2012.03.008

    Article  CAS  Google Scholar 

  11. Takanoa H, Izumiyaa K, Kumagai N, Hashimoto K (2011) The effect of heat treatment on the performance of the Ni/(Zr–Sm oxide) catalysts for carbon dioxide methanation. Appl Surf Sci 257(19):8171–8176. doi:10.1016/j.apsusc.2011.01.141

  12. Hwang S, Lee J, Hong UG, Baik JH, Koh DJ, Limc H, Song IK (2013) Methanation of carbon dioxide over mesoporous Ni–Fe–Ru–Al2O3 xerogel catalysts: effect of ruthenium content. J Ind Eng Chem 19(2):698–703. doi:10.1016/j.jiec.2012.10.007

  13. Liu X, Bai S, Zhuang H, Yan Z (2012) Preparation of Cu/ZrO2 catalysts for methanol synthesis from CO2/H2. Front Chem Sci Eng 6(1):47–52. doi:10.1007/s11705-011-1170-4

    Article  CAS  Google Scholar 

  14. Gao P, Li F, Zhan H, Zhao N, Xiao F, Wei W, Zhong L, Wang H, Sun Y (2013) Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. J Catal 298:51–60. doi:10.1016/j.jcat.2012.10.030

  15. Kong H, Li HY, Lin GD, Zhang HB (2011) Pd-decorated CNT-promoted Pd–Ga2O3 catalyst for hydrogenation of CO2 to methanol. Catal Lett 141(6):886–894. doi:10.1007/s10562-011-0584-4

    Article  CAS  Google Scholar 

  16. Iablokov V, Beaumont SK, Alayoglu S, Pushkarev VV, Specht C, Gao J, Alivisatos AP, Kruse N, Somorjai GA (2012) Size-controlled model Co nanoparticle catalysts for CO2 hydrogenation: synthesis, characterization, and catalytic reactions. Nano Lett 12(6):3091–3096. doi:10.1021/nl300973b

    Article  CAS  Google Scholar 

  17. Ahmed N, Morikawa M, Izumi Y (2012) Photocatalytic conversion of carbon dioxide into methanol using optimized layered double hydroxide catalysts. Catal Today 185(1):263–269. doi:10.1016/j.cattod.2011.08.010

    Article  CAS  Google Scholar 

  18. Uner D, Oymak MM (2012) On the mechanism of photocatalytic CO2 reduction with water in the gas phase. Catal Today 181(1):82–88. doi:10.1016/j.cattod.2011.06.019

  19. Beuls A, Swalus C, Jacquemin M, Heyen G, Karelovic A, Ruiz P (2012) Methanation of CO2: further insight into the mechanism over Rh/γ-Al2O3 catalyst. Appl Catal Environ 113–114:2–10. doi:10.1016/j.apcatb.2011.02.033

  20. Ye J, Liu C, Ge Q (2012) DFT study of CO2 adsorption and hydrogenation on the In2O3 surface. J Phys Chem 116(14):7817–7825. doi:10.1021/jp3004773

    CAS  Google Scholar 

  21. Yang Y, Evans J, Rodriguez JA, White MG, Liu P (2012) Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001). Phys Chem Chem Phys 12(33):9909–9917. doi:10.1039/c001484b

  22. Li HJ, Ho JJ (2010) Density functional calculations on the hydrogenation of carbon dioxide on Fe(111) and W(111) surfaces. J Phys Chem 114(2):1194–1200. doi:10.1021/jp909428r

    CAS  Google Scholar 

  23. Zhang ST, Yan H, Wei M, Evans DG, Dua X (2014) Hydrogenation mechanism of carbon dioxide and carbon monoxide on Ru(0001) surface: a density functional theory study. RSC Adv 4:30241–30249. doi:10.1039/C4RA01655F

    Article  CAS  Google Scholar 

  24. Ren J, Guo H, Yang J, Qin Z, Lin J, Li Z (2015) Insights into the mechanisms of CO2 methanation on Ni(111) surfaces by density functional theory. Appl Surf Sci 351:504–516. doi:10.1016/j.apsusc.2015.05.173

  25. Bothra P, Periyasamy G, Pati SK (2013) Methane formation from the hydrogenation of carbon dioxide on Ni(110) surface—a density functional theoretical study. Phys Chem Chem Phys 15(2013):5701–5706. doi:10.1039/C3CP44495C

  26. Pan QS, Peng JX, Wang S, Wang SD (2014) In situ FTIR spectroscopic study of the CO2 methanation mechanism on Ni/Ce0.5Zr0.5O2. Catal Sci Technol 4:502–509. doi:10.1039/c3cy00868a

  27. Sharma S, Hu ZP, Zhang P, McFarland EW, Metiu H (2011) CO2 methanation on Ru-doped ceria. J Catal 278(2):297–309. doi:10.1016/j.jcat.2010.12.015

  28. Schild C, Wokaun A, Baiker A (1990) On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study. Part II. Surface species on copper/zirconia catalysts: implications for methanol synthesis selectivity. J Mol Catal 63(2):243–254. doi:10.1016/0304-5102(90)85147-A

  29. Shetty S, Jansen APJ, van Santen RA (2010) Methane formation on corrugated Ru surfaces. J Phys Chem C 114(51):22630–22635. doi:10.1021/jp108753a

    Article  CAS  Google Scholar 

  30. Chang FW, Kuo MS, Tsay MT, Hsieh MC (2003) Hydrogenation of CO2 over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation. Appl Catal Gen 247(2):309–320. doi:10.1016/S0926-860X(03)00181-9

  31. Wang W, Wang S, Ma X, Gon J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727. doi:10.1039/C1CS15008A

    Article  CAS  Google Scholar 

  32. Vargas DP, Giraldo L, Moreno-Piraján JC (2012) CO2 adsorption on activated carbon honeycomb monoliths: a comparison of Langmuir and Tóth models. Int J Mol Sci 13(7):8388–8397. doi:10.3390/ijms13078388

  33. Wood BC, Bhide SY, Dutta D, Kandagal VS, Pathak AD, Punnathanam SN, Ayappa KG, Narasimhan S (2012) Methane and carbon dioxide adsorption on edge-functionalized graphene: a comparative DFT study. J Chem Phys 137:054702. doi:10.1063/1.4736568

    Article  Google Scholar 

  34. Tripkovic V, Vanin M, Karamad M, Bjorketun ME, Jacobsen KW, Thygesen KS, Rossmeisl J (2013) Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene. J Phys Chem C 117(18):9187–9195. doi:10.1021/jp306172k

    Article  CAS  Google Scholar 

  35. Guo B, Chang L, Xie K (2006) Adsorption of carbon dioxide on activated carbon. J Nat Gas Chem 15(3):223–229. doi:10.1016/S1003-9953(06)60030-3

    Article  CAS  Google Scholar 

  36. Jiao Y, Dua A, Zhu Z, Rudolph V, Luc GQ (Max), Smith SC (2011) A density functional theory study on CO2 capture and activation by graphene-like boron nitride with boron vacancy. Catal Today 175(1):271–275. doi:10.1016/j.cattod.2011.02.043

  37. Tawfik SA, Cui X, Ringer S, Stampfl C (2015) Multiple CO2 capture in stable metal-doped graphene: a theoretical trend study. RSC Adv 5:50975-50982. doi:10.1039/C5RA09876A

  38. Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R (2012) Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res 51(4):1438–1463. doi:10.1021/ie200686q

    Article  CAS  Google Scholar 

  39. Harris PJF, Liu Z, Suenaga K (2008) Imaging the structure of activated carbon using aberration corrected TEM. J Phys Condens Matter 20(36):362201. doi:10.1088/0953-8984/20/36/362201

    Article  Google Scholar 

  40. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Let 77(18):3865–3868. doi:10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  41. Hamann DR, Schlüter M, Chiang C (1979) Norm-conserving pseudopotentials. Phys Rev Let 43:1494–1497

    Article  CAS  Google Scholar 

  42. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779. doi:10.1088/0953-8984/14/11/302

    Article  CAS  Google Scholar 

  43. Berne BJ, Ciccotti G, Coker DF (1998) Classical and quantum dynamics in condensed phase systems. World Scientific, Singapore

    Book  Google Scholar 

  44. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 133:9901–9904

    Article  Google Scholar 

  45. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799. doi:10.1002/jcc.20495

    Article  CAS  Google Scholar 

  46. Mayo SL, Olafson BD, Goddard WA III (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94(26):8897–8909. doi:10.1021/j100389a010

    Article  CAS  Google Scholar 

  47. Bondi A (1964) Van der Waals volumes and radii. J Phys Chem 68(3):441–451. doi:10.1021/j100785a001

  48. Chandrasekhar S (1943) Stochastic problems in physics and astronomy. Rev Mod Phys 15(1):1–89. doi:10.1103/RevModPhys.15.1

    Article  Google Scholar 

  49. Koningsberger DC, Prins R (eds) (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York

Download references

Acknowledgments

This work was supported by the Vietnam Ministry of Education and Training, project number B2013-17-38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Ngoc Ha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, N.N., Ha, N.T.T., Van Khu, L. et al. Theoretical study of carbon dioxide activation by metals (Co, Cu, Ni) supported on activated carbon. J Mol Model 21, 322 (2015). https://doi.org/10.1007/s00894-015-2864-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2864-1

Keywords

Navigation