Skip to main content
Log in

Insight into the structural stability of wild type and mutants of the tobacco etch virus protease with molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The efficiency and high specificity of tobacco etch virus protease (TEVp) has made it widely used for cleavage of recombinant fusion proteins. However, TEVp suffers from a few intrinsic defects such as self-cleavage, poorly expressed in E. coli and less soluble. So some mutants were designed to improve it, such as S219V, T17S/N68D/I77V and L56V/S135G etc. MD simulations for the WT TEVp and its mutants were performed to explore the underlying dynamic effects of mutations on TEVp. Although the globular domains are fairly conserved, the three mutations have diverse effects on the dynamics properties of TEVp, including the elongation of β-sheet, conversion of loop to helix and the flexibility of active core. Our present study indicates that the three mutants for TEVp can change their secondary structure and tend to form more helixes and sheets to improve stability. The study also helps us to understand the effects of some mutations on TEVp, provides us insights into the change of them at the atomic level and gives a potential rational method to design an improved protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TEVp:

Tobacco etch virus protease

MD:

Molecular dynamics

WT:

Wild type

SASA:

Solvent accessible surface area

DCCM:

Dynamic cross correlation map

References

  1. Parks TD, Howard ED, Wolpert TJ, Arp DJ, Dougherty WG (1995) Expression and purification of a recombinant tobacco etch virus NIa proteinase: biochemical analyses of the full-length and a naturally occur- ring truncated proteinase form. Virology 210:194–201

    Article  CAS  Google Scholar 

  2. Kapust RB, Waugh DS (2000) Controlled intracellular processing of fusion proteins by TEV protease. Protein Expr Purif 19:312–318

    Article  CAS  Google Scholar 

  3. Shih YP, Wu HC, Hu SM, Wang TF, Wang AHJ (2005) Self-cleavage of fusion protein in vivo using TEV protease to yield native protein. Protein Sci 14:936–941

    Article  CAS  Google Scholar 

  4. Chen X, Pham E, Truong K (2010) TEV protease-facilitated stoichiometric delivery of multiple genes using a single expression vector. Protein Sci 19:2379–2388

    Article  CAS  Google Scholar 

  5. Waugh DS (2011) An overview of enzymatic reagents for the removal of affinity tags. Protein Expr Purif 80:283–293

    Article  CAS  Google Scholar 

  6. Wei L, Cai X, Qi Z, Rong L, Cheng B, Fan J (2012) In vivo and in vitro characterization of TEV protease mutants. Protein Expr Purif 83:157–163

    Article  CAS  Google Scholar 

  7. Kapust RB, Tözsér J, Fox JD, Anderson DE, Cherry S, Copeland TD, Waugh DS (2001) Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng 14:993–1000

    Article  CAS  Google Scholar 

  8. Van den Berg S, Löfdahl PA, Härd T, Berglund H (2006) Improved solubility of TEV protease by directed evolution. J Biotechnol 121:291–298

    Article  Google Scholar 

  9. Cabrita LD, Gilis D, Robertson AL, Dehouck Y, Rooman M, Bottomley SP (2007) Enhancing the stability and solubility of TEV protease using in silico design. Protein Sci 16:2360–2367

    Article  CAS  Google Scholar 

  10. Phan J, Zdanov A, Evdokimov AG, Tropea JE, Peters HK III, Kapust RB, Li M, Wlodawer A, Waugh DS (2002) Structural basis for the substrate specificity of tobacco etch virus protease. J Biol Chem 277:50564–50572

    Article  CAS  Google Scholar 

  11. Nunn CM, Jeeves M, Cliff MJ, Urquhart GT, George RR, Chao LH, Tscuchia Y, Djordjevic S (2005) Crystal structure of tobacco etch virus protease shows the protein C terminus bound within the active site. J Mol Biol 350:145–155

    Article  CAS  Google Scholar 

  12. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652

    Article  CAS  Google Scholar 

  13. Sotomayor M, Schulten K (2007) Single-molecule experiments in vitro and in silico. Science 316:1144–1148

    Article  CAS  Google Scholar 

  14. Lin YW (2011) Structural insights into a low-spin myoglobin variant with bis-histidine coordination from molecular modeling. Proteins 79:679–684

    Article  CAS  Google Scholar 

  15. Lin YW, Wu YM, Liao LF, Nie CM (2012) Molecular modeling of cytochrome b5 with a single cytochrome c-like thioether linkage. J Mol Model 18:1553–1560

    Article  CAS  Google Scholar 

  16. Amorim HLN, Netz PA, Guimarães JA (2010) Thrombin allosteric modulation revisited: a molecular dynamics study. J Mol Model 16:725–735

    Article  Google Scholar 

  17. Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  18. Martı-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Biophys Biomol Struct Rev 29:291–325

    Article  Google Scholar 

  19. Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9:1753–1773

    Article  CAS  Google Scholar 

  20. Eswar N, Eramian D, Webb B, Shen MY, Sali A (2008) Protein structure modeling with MODELLER. Methods Mol Biol 426:145–159

    Article  CAS  Google Scholar 

  21. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  22. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlen-krich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  23. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  24. Batcho PF, Case DA, Schlick T (2001) Optimized particle-mesh ewald/multiple-time step integration for molecular dynamics simulations. J Chem Phys 115:4003–4018

    Article  CAS  Google Scholar 

  25. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  26. Miyamoto S, Kollman PA (1992) SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  27. Andersen HC (1983) RATTLE: a velocity version of the SHAKE algorithm for molecular dynamics calculations. J Comput Phys 52:24–34

    Article  CAS  Google Scholar 

  28. Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  29. Martyna GJ, Tobias DJ, Klein ML (1994) Constant-pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189

    Article  CAS  Google Scholar 

  30. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  31. Frishman D, Argos P (1995) Knowledge-based secondary structure assignment. Proteins 23:566–579

    Article  CAS  Google Scholar 

  32. Chong SH, Lee C, Kang G, ParK M, Ham S (2011) Structural and thermodynamic investigations on the aggregation and folding of acylphosphatase by molecular dynamics simulations and solvation free energy analysis. J Am Chem Soc 133:7075–7083

    Article  CAS  Google Scholar 

  33. Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55:379–400

    Article  CAS  Google Scholar 

  34. Guo J, Ning L, Ren H, Liu H, Yao X (2012) Influence of the pathogenic mutations T188K/R/A on the structural stability and misfolding of human prion protein: insight from the molecular dynamics simulations. Biochim Biophys Acta 1820:116–123

    Article  CAS  Google Scholar 

  35. Padhi AK, Kumar H, Vasaikar SV, Jayaram B, Gomes J (2012) Mechanisms of loss of functions of human angiogenin variants implicated in amyotrophic lateral sclerosis. PLoS One 7(2):e32479

    Article  CAS  Google Scholar 

  36. Natarajan K, Senapati S (2012) Understanding the basis of drug resistance of the mutants of αβ-Tubulin dimer via molecular dynamics simulations. PLoS One 7(8):e42351

    Article  CAS  Google Scholar 

  37. Tokuriki N, Tawfik DS (2009) Protein dynamism and evolvability. Science 324:203–207

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Technology R&D program of China (2009BAK61B04, 2006BAF07B01) and Science & Technology Foundation of Sichuan Province (2011JTD0026). NAMD and VMD were developed by the Theoretical Biophysics Group in the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-Fang Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zhu, GF., Ren, SY. et al. Insight into the structural stability of wild type and mutants of the tobacco etch virus protease with molecular dynamics simulations. J Mol Model 19, 4865–4875 (2013). https://doi.org/10.1007/s00894-013-1930-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1930-9

Keywords

Navigation