Skip to main content
Log in

Energetics of liposomes encapsulating silica nanoparticles

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Nanoparticles may be taken up into cells via endocytotic processes whereby the foreign particles are encapsulated in vesicles formed by lipid bilayers. After uptake into these endocytic vesicles, intracellular targeting processes and vesicle fusion might cause transfer of the vesicle cargo into other vesicle types, e.g., early or late endosomes, lysosomes, or others. In addition, nanoparticles might be taken up as single particles or larger agglomerates and the agglomeration state of the particles might change during vesicle processing. In this study, liposomes are regarded as simple models for intracellular vesicles. We compared the energetic balance between two liposomes encapsulating each a single silica nanoparticle and a large liposome containing two silica nanoparticles. Analytical expressions were derived that show how the energy of the system depends on the particle size and the distance between the particles. We found that the electrostatic contributions to the total energy of the system are negligibly small. In contrast, the van der Waals term strongly favors arrangements where the liposome snugly fits around the nanoparticle(s). Thus the two separated small liposomes have a more favorable energy than a larger liposome encapsulating two nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen M, von Mikecz A (2005) Exp Cell Res 305:51

    Article  CAS  Google Scholar 

  2. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Nat Meter 8:543

    Article  CAS  Google Scholar 

  3. Conner SD, Schmid SL (2003) Nature 422:37

    Article  CAS  Google Scholar 

  4. Dohertyand GJ, McMahon HT (2009) Annu Rev Biochem 78:857

    Article  Google Scholar 

  5. Zhao F, Zhang Y, Liu Y, Chang X, Chen C, Zhao Y (2011) Small 7:1322

    Article  CAS  Google Scholar 

  6. Stayton I, Winiarz J, Shannon K, Ma Y (2009) Anal Bioanal Chem 394:1595

    Article  CAS  Google Scholar 

  7. Xing X, He X, Peng J (2005) J Nanosci Nanotechnol 5:1688

    Article  CAS  Google Scholar 

  8. Cho EC, Xie J, Wurm PA, Xia Y (2009) Nano Lett 9:1080

    Article  CAS  Google Scholar 

  9. Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ (2005) Environ Sci Technol 39:9370

    Article  CAS  Google Scholar 

  10. Schübbe S, Cavelius C, Schumann C, Koch M, Kraegeloh A (2010) Adv Eng Mater 12:417

    Article  Google Scholar 

  11. Schübbe S, Schumann C, Cavelius C, Koch M, Mueller T, Kraegeloh A (2012) Chem Mater 24:914

    Article  Google Scholar 

  12. Heller MJ (2002) Annu Rev Biomed Eng 4:129

    Article  CAS  Google Scholar 

  13. Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY (2008) Adv Drug Deliv Rev 60:1278

    Article  CAS  Google Scholar 

  14. Kneuer C, Sameti M, Bakowsky U, Schiestel T, Schirra H, Schmidt H, Lehr CM (2000) Bioconjugate Chem 11:926

    Article  CAS  Google Scholar 

  15. Luo D, Han E, Belcheva N, Saltzman WM (2004) J Contr Release 95:333

    Article  CAS  Google Scholar 

  16. Radu DR, Lai CY, Jeftinija K, Rowe EW, Jeftinija S, Lin VSY (2004) J Am Chem Soc 126:1321

    Google Scholar 

  17. Roy I, Ohulchanskyy TY, Bharali DJ, Pudavar HE, Mistretta RA, Kaur N, Prasad P (2005) Proc Natl Acad Sci USA 102:279

    Article  CAS  Google Scholar 

  18. Bharali DJ, Klejbor I, Stachowiak EK, Dutta P, Roy I, Kaur N, Bergey EJ, Prasad PN, Stachowiak MK (2005) Proc Natl Acad Sci USA 102:11539

    Article  CAS  Google Scholar 

  19. Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI, Nel AE (2009) ACS Nano 3:3273

    Article  CAS  Google Scholar 

  20. Slowing II, Trewyn BG, Giri S, Lin VSY (2007) Adv Funct Mater 17:1225

    Article  CAS  Google Scholar 

  21. Chen JF, Ding HM, Wang JX, Shao L (2004) Biomaterials 25:723

    Article  Google Scholar 

  22. Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VSY (2010) Small 6:1952

    Article  CAS  Google Scholar 

  23. Schumann C, Schübbe S, Cavelius C, Kraegeloh A (2012) J Biophotonics 5:117

    Article  Google Scholar 

  24. Lieber M, Todaro G, Smith B, Szakal A, Nelson-Rees W (1976) Int J Cancer 17:62

    Article  CAS  Google Scholar 

  25. Peckys D, de Jonge N (2011) Nano Lett 11:1733

    Article  CAS  Google Scholar 

  26. Malvindi MA, Brunetti V, Vecchio G, Galeone A, Cingolanib R, Pompa PP (2012) Nanoscale 4:486

    Article  CAS  Google Scholar 

  27. Sackmann E (1994) FEBS Lett 346:3

    Article  CAS  Google Scholar 

  28. Foldvari M, Gesztes A, Mezei M (1990) J Microencapsul 7:479

    Article  CAS  Google Scholar 

  29. Puyal C, Milhaud P, Bienvenüe A, Philippot JR (1995) Eur J Biochem 228:697

    Article  CAS  Google Scholar 

  30. Mohanraj VJ, Barnes TJ, Prestidge CA (2010) Int J Pharmaceut 392:285

    Article  CAS  Google Scholar 

  31. Ash WL, Zlomislic MR, Oloo EO, Tieleman DP (2004) Biochim Biophys Acta 1666:158

    Article  CAS  Google Scholar 

  32. Berkowitz ML, Bostick DL, Pandit S (2006) Chem Rev 106:1527

    Article  CAS  Google Scholar 

  33. Siu SWI, Vácha R, Jungwirth P, Böckmann RA (2008) J Chem Phys 128:125103

    Article  Google Scholar 

  34. Wong-Ekkabut J, Baoukina S, Triampo W, Tang IM, Tieleman DP, Monticelli L (2008) Nat Nanotechnol 3:363

    Article  CAS  Google Scholar 

  35. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) J Phys Chem B 111:7812

    Article  CAS  Google Scholar 

  36. Shelley JC, Shelley MY, Reeder RC, Bandyopadhyay S, Moore PB, Klein ML (2001) J Phys Chem B 105:9785

    Article  CAS  Google Scholar 

  37. Wallace EJ, Sansom MSP (2007) Nano Lett 7:1923

    Article  CAS  Google Scholar 

  38. Shinoda W, DeVane R, Klein ML (2010) J Phys Chem B 114:6836

    Article  CAS  Google Scholar 

  39. Girifalco LA, Hodak M, Lee RS (2000) Phys Rev B 62:13104

    Article  CAS  Google Scholar 

  40. Hodak M, Girifalco LA (2001) Chem Phys Lett 350:405

    Article  CAS  Google Scholar 

  41. Cox BJ, Thamwattana N, Hill JM (2007) Proc Roy Soc A 463:461

    Article  CAS  Google Scholar 

  42. Cox BJ, Thamwattana N, Hill JM (2007) Proc Roy Soc A 463:477

    Article  CAS  Google Scholar 

  43. Baowan D, Cox BJ, Hill JM (2012) J Mol Model 18:549

    Article  CAS  Google Scholar 

  44. Qian D, Liu WK, Ruoff RS (2001) J Phys Chem B 105:10753

    Article  CAS  Google Scholar 

  45. Liu P, Zhang YW, Lu C (2005) J Appl Phys 97:094313

    Article  Google Scholar 

  46. Patwardhan SV, Patwardhan G, Perry CC (2007) J Mater Chem 17:2875

    Article  CAS  Google Scholar 

  47. Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) J Am Chem Soc 112:6127

    Article  CAS  Google Scholar 

  48. Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York

  49. Cruz-Chu ER, Aksimentiev A, Schulten K (2006) J Phys Chem B 110:21497

    Article  CAS  Google Scholar 

  50. Dorota N, Leen T, Dominique L, Johan M, Peter H (2010) Part Fibre Toxicol 7:39

    Article  Google Scholar 

  51. Zhuravlev LT (2000) Colloid Surface Physicochem Eng Aspect 173:1

    Article  CAS  Google Scholar 

  52. Makimura D, Metin C, Kabashima T, Matsuoka T, Nguyen QP, Miranda CR (2010) J Mater Sci 45:5084

    Article  CAS  Google Scholar 

  53. Petrache HI, Feller SE, Nagle JF (1997) Biophys J 70:2237

    Article  Google Scholar 

  54. Chu Z, Huang Y, Taob Q, Li Q (2011) Nanoscale 3:3291

    Article  CAS  Google Scholar 

  55. Lin JH, Baker NA, McCammon JA (2002) Biophys J 83:1374

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a postdoctoral fellowship to DB by the Alexander von Humboldt Foundation. The authors thank Dr. Tihamér Geyer for many helpful discussions and Dr. Michael Hutter for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duangkamon Baowan.

Appendix

Appendix

The expressions of the interaction energy for both Coulombic and Lennard-Jones potentials are given in this appendix.

A: Electrostatic energy

The electrostatic energy between the inner and the outer head groups and the nanoparticle, utilizing double surface integrals for concentric spheres or for offset of concentric spheres, is given by

$$ \begin{array}{*{20}c} {{Q_1}\left( {a,b} \right)} \hfill & {=\tfrac{{D{\eta_{sh }}(b){e^2}}}{{4\pi }}\left[ {\tfrac{1}{{{\epsilon_0}{\epsilon_r}}}-\tfrac{1}{2}\left( {1-\tfrac{1}{{{\epsilon_r}}}} \right)} \right]\left[ {\tfrac{1}{2}\left( {0.3} \right)(1)L_{1/2}^Q\left( {a,b} \right)} \right.} \hfill \\ {} \hfill & {+\tfrac{1}{2}\left( {-0.3} \right)(1)L_{1/2}^Q\left( {a+0.161,b} \right)+\tfrac{1}{2}\left( {0.3} \right)\left( {-1} \right)L_{1/2}^Q\left( {a,b+0.05} \right)} \hfill \\ {} \hfill & {+\tfrac{1}{2}\left( {-0.3} \right)\left( {-1} \right)L_{1/2}^Q\left( {a+0.161,b+0.05} \right)+\tfrac{1}{2}\left( {0.3} \right)(1)L_{1/2}^Q\left( {a,b+4.336} \right)} \hfill \\ {} \hfill & {+\tfrac{1}{2}\left( {-0.3} \right)(1)L_{1/2}^Q\left( {a+0.161,b+4.336} \right)+\tfrac{1}{2}\left( {0.3} \right)\left( {-1} \right)L_{1/2}^Q\left( {a,b+4.286} \right)} \hfill \\ {} \hfill & {\left. {+\frac{1}{2}\left( {-0.3} \right)\left( {-1} \right)L_{1/2}^Q\left( {a+0.161,b+42.86} \right)} \right],} \hfill \\ \end{array} $$
(A1)

where e denotes an elementary charge, D represents a dangling atom density of 1 nm−2 for both silicon and oxygen and \( L_{1/2}^Q\left( {a,b} \right) \) is given by (4). The rational coefficients come from the proportional content of 1/2 choline and 1/2 phosphate groups in the head group. The charge values are as given in Table 1.

The electrostatic energy between two offset spheres for the SiO2 nanoparticles is given by

$$ \begin{array}{*{20}c} {{Q_2}(a)} \hfill & {=\tfrac{{{D^2}{e^2}}}{{4\pi }}\left[ {\tfrac{1}{{{\epsilon_0}{\epsilon_r}}}-\tfrac{1}{2}\left( {1-\tfrac{1}{{{\epsilon_r}}}} \right)} \right]\left[ {\left( {0.3} \right)\left( {0.3} \right)K_{1/2}^Q\left( {a,a} \right)} \right.} \hfill \\ {} \hfill & { + \left( {-0.3} \right)\left( {-0.3} \right)\mathrm{K}_{1/2}^Q\left( {a+0.161,a+0.161} \right)} \hfill \\ {} \hfill & {\left. {+2\left( {0.3} \right)\left( {-0.3} \right)K_{1/2}^Q\left( {a,a+0.161} \right)} \right],} \hfill \\ \end{array} $$
(A2)

where \( K_{1/2}^Q\left( {a,b} \right) \) is given by (3), and a and a + 0.161 denote the radii of the probability distribution of silicon and oxygen atoms, respectively.

The electrostatic energy between two offset spherical liposomes is given by

$$ \begin{array}{*{20}c} {{Q_3}\left( {a,b} \right)} \hfill & {=Q_3^{*}\left( {b,b+0.05} \right)+Q_3^{*}\left( {b+4.286,b+4.336} \right)} \hfill \\ {} \hfill & {Q_3^{*}\left( {b,b+0.05} \right)+Q_3^{*}\left( {b+4.286,b+4.336} \right)} \hfill \\ {} \hfill & { + 2\mathrm{Q}_3^{**}\left( {b,b+0.05,b+4.286,b+4.336} \right),} \hfill \\ \end{array} $$
(A3)

where

$$ \begin{array}{*{20}c} {Q_3^{*}\left( {a,b} \right)} \hfill & {=\tfrac{{{\eta_{sh }}(a){\eta_{sh }}(b){e^2}}}{{4\pi }}\left[ {\tfrac{1}{{{\epsilon_0}{\epsilon_r}}}-\tfrac{1}{2}\left( {1-\tfrac{1}{{{\epsilon_r}}}} \right)} \right]\left[ {\tfrac{1}{4}(1)(1)K_{1/2}^Q\left( {a,a} \right)} \right.} \hfill \\ {} \hfill & {\left. {+\tfrac{1}{4}\left( {-1} \right)\left( {-1} \right)K_{1/2}^Q\left( {b,b} \right)+2\left( {\tfrac{1}{4}} \right)(1)\left( {-1} \right)K_{1/2}^Q\left( {a,b} \right)} \right],} \hfill \\ \end{array} $$

and

$$ \begin{array}{*{20}c} {Q_3^{**}\left( {a,b} \right)} \hfill & {=\tfrac{{{\eta_{sh }}(a){\eta_{sh }}(d){e^2}}}{{4\pi }}\left[ {\tfrac{1}{{{\epsilon_0}{\epsilon_r}}}-\tfrac{1}{2}\left( {1-\tfrac{1}{{{\epsilon_r}}}} \right)} \right]\left[ {\tfrac{1}{4}(1)(1)K_{1/2}^Q\left( {a,d} \right)} \right.} \hfill \\ {} \hfill & { + \frac{1}{4}\left( {-1} \right)\left( {-1} \right)K_{1/2}^Q\left( {b,c} \right)+\frac{1}{4}(1)\left( {-1} \right)K_{1/2}^Q\left( {a,c} \right)} \hfill \\ {} \hfill & {\left. {+\frac{1}{4}\left( {-1} \right)(1)K_{1/2}^Q\left( {b,d} \right)} \right],} \hfill \\ \end{array} $$

and \( K_{1/2}^Q\left( {a,b} \right) \) is defined by (3).

B: van der Waals energy

The van der Waals energy between a head group and the nanoparticle utilizing a surface integral for SiO2 of radius a and a volume integral for the head group of the inner radius b and of the thickness 0.4 nm is given by

$$ \begin{array}{*{20}c} {{P_1}\left( {a,b} \right)} \hfill & {={\eta_{silica }}{\eta_{vh }}(b)\left[ {\tfrac{1}{6}\left( {-{A_{{Si-{Q_a}}}}{I_3}\left[ {N_n^{LJ}\left( {a,b,0.4} \right)} \right]+{B_{{Si-{Q_a}}}}{I_6}\left[ {N_n^{LJ}\left( {a,b,0.4} \right)} \right]} \right)} \right.} \hfill \\ {} \hfill & {+\tfrac{1}{6}\left( {-{A_{{Si-{Q_o}}}}{I_3}\left[ {N_n^{LJ}\left( {a,b,0.4} \right)} \right]+{B_{{Si-{Q_o}}}}{I_6}\left[ {N_n^{LJ}\left( {a,b,0.4} \right)} \right]} \right)} \hfill \\ {} \hfill & {+\tfrac{2}{6}\left( {-{A_{{O-{Q_a}}}}{I_3}\left[ {N_n^{LJ}\left( {a,b,0.4} \right)} \right]+{B_{{O-{Q_a}}}}{I_6}\left[ {N_n^{LJ}\left( {a,b,0.4} \right)} \right]} \right)} \hfill \\ {} \hfill & {+\left. {\frac{2}{6}\left( {-{A_{{O-{Q_o}}}}{I_3}\left[ {N_n^{LJ}\left( {a,b,0.4} \right)} \right]+{B_{{O-{Q_o}}}}{I_6}\left[ {N_n^{LJ}\left( {a,b,0.4} \right)} \right]} \right)} \right],} \hfill \\ \end{array} $$
(B1)

where A 1−2 and B 1−2 are the Lennard-Jones attractive and repulsive constants, respectively, obtained by the mixing rule. The function \( N_n^{LJ}\left( {a,b,0.4} \right) \) is defined by (11) where n is a positive integer corresponding to the power of the polynomials appearing in integrals I 3 and I 6 defined by (6) and (7). Again, the rational coefficients come from the proportional content of 1/2 choline and 1/2 phosphate groups in the head group, and of 1/3 silicon and 2/3 oxygen atoms in the silica nanoparticle.

The van der Waals energy between the intermediate layer and the nanoparticle utilizing double surface integrals for concentric spheres where the radius of SiO2 (intermediate layer) is assumed to be a (b) is given by

$$ \begin{array}{*{20}c} {{P_2}\left( {a,b} \right)} \hfill & {={\eta_{silica }}{\eta_{si }}(b)\left[ {\tfrac{1}{3}\left( {-{A_{{Si-{N_a}}}}{I_3}\left[ {L_n^{LJ}\left( {a,b} \right)} \right]+{B_{{Si-{N_a}}}}{I_6}\left[ {L_n^{LJ}\left( {a,b} \right)} \right]} \right)} \right.} \hfill \\ {} \hfill & {+\left. {\frac{2}{3}\left( {-{A_{{O-{N_a}}}}{I_3}\left[ {L_n^{LJ}\left( {a,b} \right)} \right]+{B_{{O-{N_a}}}}{I_6}\left[ {L_n^{LJ}\left( {a,b} \right)} \right]} \right)} \right],} \hfill \\ \end{array} $$
(B2)

where \( L_n^{LJ}\left( {a,b} \right) \) is given by (9) and n is a positive integer corresponding to the power of I 3 and I 6 defined by (6) and (7).

The van der Waals energy between the tail group and the nanoparticle utilizing a surface integral for SiO2 of radius a and a volume integral for the tail group of the inner radius b and of the thickness 1.6 nm is given by

$$ \begin{array}{*{20}c} {{P_3}\left( {a,b} \right)} \hfill & {={\eta_{silica }}{\eta_{vt }}(b)\left[ {\tfrac{1}{3}\left( {-{A_{{Si-{C_1}}}}{I_3}\left[ {N_n^{LJ}\left( {a,b,1.6} \right)} \right]+{B_{{Si-{C_1}}}}{I_6}\left[ {N_n^{LJ}\left( {a,b,1.6} \right)} \right]} \right)} \right.} \hfill \\ {} \hfill & {+\left. {\frac{2}{3}\left( {-{A_{{O-{C_1}}}}{I_3}\left[ {N_n^{LJ}\left( {a,b,1.6} \right)} \right]+{B_{{O-{C_1}}}}{I_6}\left[ {N_n^{LJ}\left( {a,b,1.6} \right)} \right]} \right)} \right],} \hfill \\ \end{array} $$
(B3)

where \( N_n^{LJ}\left( {a,b,1.6} \right) \) is defined by (11) with corresponding values of n.

In the case when the inner sphere moves away from the origin to the distance x, the van der Waals energy between a head group and the inner nanoparticle utilizing a surface integral for SiO2 of radius a and a volume integral for the head group of inner radius b and of thickness 0.4 nm is given by

$$ \begin{array}{*{20}c} {{P_4}\left( {a,b} \right)} \hfill & {={\eta_{silica }}{\eta_{vh }}(b)\left[ {\tfrac{1}{6}\left( {-{A_{{Si-{Q_a}}}}{I_3}\left[ {O_n^{LJ}\left( {a,b,0.4} \right)} \right]+{B_{{Si-{Q_a}}}}{I_6}\left[ {O_n^{LJ}\left( {a,b,0.4} \right)} \right]} \right)} \right.} \hfill \\ {} \hfill & {+\tfrac{1}{6}\left( {-{A_{{Si-{Q_o}}}}{I_3}\left[ {O_n^{LJ}\left( {a,b,0.4} \right)} \right]+{B_{{Si-{Q_o}}}}{I_6}\left[ {O_n^{LJ}\left( {a,b,0.4} \right)} \right]} \right)} \hfill \\ {} \hfill & {+\tfrac{2}{6}\left( {-{A_{{O-{Q_a}}}}{I_3}\left[ {O_n^{LJ}\left( {a,b,0.4} \right)} \right]+{B_{{O-{Q_a}}}}{I_6}\left[ {O_n^{LJ}\left( {a,b,0.4} \right)} \right]} \right)} \hfill \\ {} \hfill & {+\left. {\frac{2}{6}\left( {-{A_{{O-{Q_o}}}}{I_3}\left[ {O_n^{LJ}\left( {a,b,0.4} \right)} \right]+{B_{{O-{Q_o}}}}{I_6}\left[ {O_n^{LJ}\left( {a,b,0.4} \right)} \right]} \right)} \right],} \hfill \\ \end{array} $$
(B4)

where \( O_n^{LJ}\left( {a,b,0.4} \right) \) is defined by (12) and n is a positive integer corresponding to the power of the polynomials appearing in integrals I 3 and I 6 defined by (6) and (7).

The van der Waals energy between the intermediate layer and the nanoparticle utilizing double surface integrals for an offset of concentric sphere shown in Fig. 1(d), with the radius of SiO2 (intermediate layer) assumed to be a (b) is given by

$$ \begin{array}{*{20}c} {{P_5}\left( {a,b} \right)} \hfill & {={\eta_{silica }}{\eta_{si }}(b)\left[ {\tfrac{1}{3}\left( {-{A_{{Si-{N_a}}}}{I_3}\left[ {M_n^{LJ}\left( {a,b} \right)} \right]+{B_{{Si-{N_a}}}}{I_6}\left[ {M_n^{LJ}\left( {a,b} \right)} \right]} \right)} \right.} \hfill \\ {} \hfill & {+\left. {\frac{2}{3}\left( {-{A_{{O-{N_a}}}}{I_3}\left[ {M_n^{LJ}\left( {a,b} \right)} \right]+{B_{{O-{N_a}}}}{I_6}\left[ {M_n^{LJ}\left( {a,b} \right)} \right]} \right)} \right],} \hfill \\ \end{array} $$
(B5)

where \( M_n^{LJ}\left( {a,b} \right) \) is given by (10) and n is a positive integer corresponding to the power of I 3 and I 6 defined by (6) and (7).

Once the silica nanoparticle moves away from the origin by distance x, the van der Waals energy between the tail group and the nanoparticle utilizing a surface integral for SiO2 of radius a and a volume integral for the tail group of the inner radius b and of the thickness 1.6 nm is given by

$$ \begin{array}{*{20}c} {{P_6}\left( {a,b} \right)} \hfill & {={\eta_{silica }}{\eta_{vt }}(b)\left[ {\tfrac{1}{3}\left( {-{A_{{Si-{C_1}}}}{I_3}\left[ {O_n^{LJ}\left( {a,b,1.6} \right)} \right]+{B_{{Si-{C_1}}}}{I_6}\left[ {O_n^{LJ}\left( {a,b,1.6} \right)} \right]} \right)} \right.} \hfill \\ {} \hfill & {+\left. {\frac{2}{3}\left( {-{A_{{O-{C_1}}}}{I_3}\left[ {O_n^{LJ}\left( {a,b,1.6} \right)} \right]+{B_{{O-{C_1}}}}{I_6}\left[ {O_n^{LJ}\left( {a,b,1.6} \right)} \right]} \right)} \right],} \hfill \\ \end{array} $$
(B6)

where \( O_n^{LJ}\left( {a,b,1.6} \right) \) is defined by (12) with corresponding values of n.

The van der Waals energy between two offset spheres for the SiO2 nanoparticles is given by

$$ \begin{array}{*{20}c} {{P_7}\left( {a,b} \right)} \hfill & {=\eta_{silica}^2\left[ {\tfrac{1}{9}\left( {-{A_{Si-Si }}{I_3}\left[ {K_n^{LJ}\left( {a,a} \right)} \right]+{B_{Si-Si }}{I_6}\left[ {K_n^{LJ}\left( {a,a} \right)} \right]} \right)} \right.} \hfill \\ {} \hfill & {+\tfrac{4}{9}\left( {-{A_{O-O }}{I_3}\left[ {K_n^{LJ}\left( {b,b} \right)} \right]+{B_{O-O }}{I_6}\left[ {K_n^{LJ}\left( {b,b} \right)} \right]} \right)} \hfill \\ {} \hfill & {+\left. {2\left( {\frac{2}{9}} \right)\left( {-{A_{Si-O }}{I_3}\left[ {K_n^{LJ}\left( {a,b} \right)} \right]+{B_{Si-O }}{I_6}\left[ {K_n^{LJ}\left( {a,b} \right)} \right]} \right)} \right],} \hfill \\ \end{array} $$
(B7)

where \( K_n^{LJ}\left( {a,b} \right) \) is defined by (8) with corresponding values of n appearing in (6) and (7), and a and b represent the radii of the probability distribution of silicon and oxygen atoms, respectively, in silica nanoparticle.

The van der Waals energy between two offset spheres of liposomes encapsulating silica nanoparticles is given by

$$ \begin{array}{*{20}c} {{P_8}\left( {a,b} \right)} \hfill & {={\eta_{sh }}(a){\eta_{sh }}(b)\left[ {\tfrac{1}{4}\left( {-{A_{{{Q_a}-{Q_a}}}}{I_3}\left[ {K_n^{LJ}\left( {a,a} \right)} \right]+{B_{{{Q_a}-{Q_a}}}}{I_6}\left[ {K_n^{LJ}\left( {a,a} \right)} \right]} \right)} \right.} \hfill \\ {} \hfill & {+\tfrac{1}{4}\left( {-{A_{{{Q_o}-{Q_o}}}}{I_3}\left[ {K_n^{LJ}\left( {b,b} \right)} \right]+{B_{{{Q_o}-{Q_o}}}}{I_6}\left[ {K_n^{LJ}\left( {b,b} \right)} \right]} \right)} \hfill \\ {} \hfill & {+\left. {2\left( {\frac{1}{4}} \right)\left( {-{A_{{{Q_a}-{Q_o}}}}{I_3}\left[ {K_n^{LJ}\left( {a,b} \right)} \right]+{B_{{{Q_a}-{Q_o}}}}{I_6}\left[ {K_n^{LJ}\left( {a,b} \right)} \right]} \right)} \right],} \hfill \\ \end{array} $$
(B8)

where \( K_n^{LJ}\left( {a,b} \right) \) is defined by (8) with corresponding values of n appearing in (6) and (7), and a and b denote the radii of choline and phosphate groups, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baowan, D., Peuschel, H., Kraegeloh, A. et al. Energetics of liposomes encapsulating silica nanoparticles. J Mol Model 19, 2459–2472 (2013). https://doi.org/10.1007/s00894-013-1784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1784-1

Keywords

Navigation