Journal of Molecular Modeling

, Volume 19, Issue 6, pp 2459–2472 | Cite as

Energetics of liposomes encapsulating silica nanoparticles

  • Duangkamon Baowan
  • Henrike Peuschel
  • Annette Kraegeloh
  • Volkhard Helms
Original Paper

Abstract

Nanoparticles may be taken up into cells via endocytotic processes whereby the foreign particles are encapsulated in vesicles formed by lipid bilayers. After uptake into these endocytic vesicles, intracellular targeting processes and vesicle fusion might cause transfer of the vesicle cargo into other vesicle types, e.g., early or late endosomes, lysosomes, or others. In addition, nanoparticles might be taken up as single particles or larger agglomerates and the agglomeration state of the particles might change during vesicle processing. In this study, liposomes are regarded as simple models for intracellular vesicles. We compared the energetic balance between two liposomes encapsulating each a single silica nanoparticle and a large liposome containing two silica nanoparticles. Analytical expressions were derived that show how the energy of the system depends on the particle size and the distance between the particles. We found that the electrostatic contributions to the total energy of the system are negligibly small. In contrast, the van der Waals term strongly favors arrangements where the liposome snugly fits around the nanoparticle(s). Thus the two separated small liposomes have a more favorable energy than a larger liposome encapsulating two nanoparticles.

Keywords

Coulombic function Lennard-Jones function Liposomes Silica nanoparticle 

References

  1. 1.
    Chen M, von Mikecz A (2005) Exp Cell Res 305:51CrossRefGoogle Scholar
  2. 2.
    Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Nat Meter 8:543CrossRefGoogle Scholar
  3. 3.
    Conner SD, Schmid SL (2003) Nature 422:37CrossRefGoogle Scholar
  4. 4.
    Dohertyand GJ, McMahon HT (2009) Annu Rev Biochem 78:857CrossRefGoogle Scholar
  5. 5.
    Zhao F, Zhang Y, Liu Y, Chang X, Chen C, Zhao Y (2011) Small 7:1322CrossRefGoogle Scholar
  6. 6.
    Stayton I, Winiarz J, Shannon K, Ma Y (2009) Anal Bioanal Chem 394:1595CrossRefGoogle Scholar
  7. 7.
    Xing X, He X, Peng J (2005) J Nanosci Nanotechnol 5:1688CrossRefGoogle Scholar
  8. 8.
    Cho EC, Xie J, Wurm PA, Xia Y (2009) Nano Lett 9:1080CrossRefGoogle Scholar
  9. 9.
    Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ (2005) Environ Sci Technol 39:9370CrossRefGoogle Scholar
  10. 10.
    Schübbe S, Cavelius C, Schumann C, Koch M, Kraegeloh A (2010) Adv Eng Mater 12:417CrossRefGoogle Scholar
  11. 11.
    Schübbe S, Schumann C, Cavelius C, Koch M, Mueller T, Kraegeloh A (2012) Chem Mater 24:914CrossRefGoogle Scholar
  12. 12.
    Heller MJ (2002) Annu Rev Biomed Eng 4:129CrossRefGoogle Scholar
  13. 13.
    Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY (2008) Adv Drug Deliv Rev 60:1278CrossRefGoogle Scholar
  14. 14.
    Kneuer C, Sameti M, Bakowsky U, Schiestel T, Schirra H, Schmidt H, Lehr CM (2000) Bioconjugate Chem 11:926CrossRefGoogle Scholar
  15. 15.
    Luo D, Han E, Belcheva N, Saltzman WM (2004) J Contr Release 95:333CrossRefGoogle Scholar
  16. 16.
    Radu DR, Lai CY, Jeftinija K, Rowe EW, Jeftinija S, Lin VSY (2004) J Am Chem Soc 126:1321Google Scholar
  17. 17.
    Roy I, Ohulchanskyy TY, Bharali DJ, Pudavar HE, Mistretta RA, Kaur N, Prasad P (2005) Proc Natl Acad Sci USA 102:279CrossRefGoogle Scholar
  18. 18.
    Bharali DJ, Klejbor I, Stachowiak EK, Dutta P, Roy I, Kaur N, Bergey EJ, Prasad PN, Stachowiak MK (2005) Proc Natl Acad Sci USA 102:11539CrossRefGoogle Scholar
  19. 19.
    Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI, Nel AE (2009) ACS Nano 3:3273CrossRefGoogle Scholar
  20. 20.
    Slowing II, Trewyn BG, Giri S, Lin VSY (2007) Adv Funct Mater 17:1225CrossRefGoogle Scholar
  21. 21.
    Chen JF, Ding HM, Wang JX, Shao L (2004) Biomaterials 25:723CrossRefGoogle Scholar
  22. 22.
    Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VSY (2010) Small 6:1952CrossRefGoogle Scholar
  23. 23.
    Schumann C, Schübbe S, Cavelius C, Kraegeloh A (2012) J Biophotonics 5:117CrossRefGoogle Scholar
  24. 24.
    Lieber M, Todaro G, Smith B, Szakal A, Nelson-Rees W (1976) Int J Cancer 17:62CrossRefGoogle Scholar
  25. 25.
    Peckys D, de Jonge N (2011) Nano Lett 11:1733CrossRefGoogle Scholar
  26. 26.
    Malvindi MA, Brunetti V, Vecchio G, Galeone A, Cingolanib R, Pompa PP (2012) Nanoscale 4:486CrossRefGoogle Scholar
  27. 27.
    Sackmann E (1994) FEBS Lett 346:3CrossRefGoogle Scholar
  28. 28.
    Foldvari M, Gesztes A, Mezei M (1990) J Microencapsul 7:479CrossRefGoogle Scholar
  29. 29.
    Puyal C, Milhaud P, Bienvenüe A, Philippot JR (1995) Eur J Biochem 228:697CrossRefGoogle Scholar
  30. 30.
    Mohanraj VJ, Barnes TJ, Prestidge CA (2010) Int J Pharmaceut 392:285CrossRefGoogle Scholar
  31. 31.
    Ash WL, Zlomislic MR, Oloo EO, Tieleman DP (2004) Biochim Biophys Acta 1666:158CrossRefGoogle Scholar
  32. 32.
    Berkowitz ML, Bostick DL, Pandit S (2006) Chem Rev 106:1527CrossRefGoogle Scholar
  33. 33.
    Siu SWI, Vácha R, Jungwirth P, Böckmann RA (2008) J Chem Phys 128:125103CrossRefGoogle Scholar
  34. 34.
    Wong-Ekkabut J, Baoukina S, Triampo W, Tang IM, Tieleman DP, Monticelli L (2008) Nat Nanotechnol 3:363CrossRefGoogle Scholar
  35. 35.
    Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) J Phys Chem B 111:7812CrossRefGoogle Scholar
  36. 36.
    Shelley JC, Shelley MY, Reeder RC, Bandyopadhyay S, Moore PB, Klein ML (2001) J Phys Chem B 105:9785CrossRefGoogle Scholar
  37. 37.
    Wallace EJ, Sansom MSP (2007) Nano Lett 7:1923CrossRefGoogle Scholar
  38. 38.
    Shinoda W, DeVane R, Klein ML (2010) J Phys Chem B 114:6836CrossRefGoogle Scholar
  39. 39.
    Girifalco LA, Hodak M, Lee RS (2000) Phys Rev B 62:13104CrossRefGoogle Scholar
  40. 40.
    Hodak M, Girifalco LA (2001) Chem Phys Lett 350:405CrossRefGoogle Scholar
  41. 41.
    Cox BJ, Thamwattana N, Hill JM (2007) Proc Roy Soc A 463:461CrossRefGoogle Scholar
  42. 42.
    Cox BJ, Thamwattana N, Hill JM (2007) Proc Roy Soc A 463:477CrossRefGoogle Scholar
  43. 43.
    Baowan D, Cox BJ, Hill JM (2012) J Mol Model 18:549CrossRefGoogle Scholar
  44. 44.
    Qian D, Liu WK, Ruoff RS (2001) J Phys Chem B 105:10753CrossRefGoogle Scholar
  45. 45.
    Liu P, Zhang YW, Lu C (2005) J Appl Phys 97:094313CrossRefGoogle Scholar
  46. 46.
    Patwardhan SV, Patwardhan G, Perry CC (2007) J Mater Chem 17:2875CrossRefGoogle Scholar
  47. 47.
    Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) J Am Chem Soc 112:6127CrossRefGoogle Scholar
  48. 48.
    Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New YorkGoogle Scholar
  49. 49.
    Cruz-Chu ER, Aksimentiev A, Schulten K (2006) J Phys Chem B 110:21497CrossRefGoogle Scholar
  50. 50.
    Dorota N, Leen T, Dominique L, Johan M, Peter H (2010) Part Fibre Toxicol 7:39CrossRefGoogle Scholar
  51. 51.
    Zhuravlev LT (2000) Colloid Surface Physicochem Eng Aspect 173:1CrossRefGoogle Scholar
  52. 52.
    Makimura D, Metin C, Kabashima T, Matsuoka T, Nguyen QP, Miranda CR (2010) J Mater Sci 45:5084CrossRefGoogle Scholar
  53. 53.
    Petrache HI, Feller SE, Nagle JF (1997) Biophys J 70:2237CrossRefGoogle Scholar
  54. 54.
    Chu Z, Huang Y, Taob Q, Li Q (2011) Nanoscale 3:3291CrossRefGoogle Scholar
  55. 55.
    Lin JH, Baker NA, McCammon JA (2002) Biophys J 83:1374CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Duangkamon Baowan
    • 1
    • 2
  • Henrike Peuschel
    • 3
  • Annette Kraegeloh
    • 3
  • Volkhard Helms
    • 4
  1. 1.Department of Mathematics, Faculty of ScienceMahidol UniversityBangkokThailand
  2. 2.Centre of Excellence in Mathematics, CHEBangkokThailand
  3. 3.Nano Cell Interactions Group, INM-Leibniz Institute for New MaterialsSaarbrueckenGermany
  4. 4.Center for Bioinformatics, Campus E2 1Saarland UniversitySaarbrueckenGermany

Personalised recommendations