Skip to main content
Log in

First-principles simulations of the chemical functionalization of (5,5) boron nitride nanotubes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We perform density functional theory studies to investigate structural and electronic properties of the (5,5) boron nitride nanotubes (BNNTs) with surfaces and ends functionalized by thiol (SH) and hydroxyl (OH) groups. The exchange-correlation energies are treated according to the functional of Hamprecht-Cohen-Tozer-Handy within the generalized gradient approximation (HCTH-GGA). We use the base function with double polarization DNP. To determine the (5,5) BNNT-SH and (5,5) BNNT-OH relaxed structures the minimum energy criterion is applied considering six different geometries depending upon the SH and OH functional groups orientation: (C1) The adsorbed functional group is oriented toward the N atom, (C2) the functional group is oriented toward the B atom, (C3) the functional group is at the central hexagon of the BNNT surface. The (C4) fourth and (C5) fifth configurations are formed by allowing bonds (of S or O) with B or N atoms at one end of the nanotube. (C6) The sixth geometry is obtained by placing the functional group at the center of one end of the BNNT. The (5,5) BNNT-SH system, in vacuum, suffers a semiconductor to metal transition while the (5,5) BNNT-OH system retains the semiconductor behavior. When structures are solvated in water these systems behave as semiconductors. The polarity increases as a consequence of the functional group-nanotube interactions no matter if they are in vacuum or in solvation situation, which indicates the possible solubility and dispersion. According to the work function the best option to construct a device is with the BNNT-OH system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rubio A, Corkill JL, Cohen M (1994) Phys Rev B 49:5081–5084

    Article  CAS  Google Scholar 

  2. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zetl A (1995) Science 269:996–967

    Article  Google Scholar 

  3. Huei Lee C, Zhang D, Khin Yap Y (2012) J Phys Chem C 116:1798–1804

    Article  Google Scholar 

  4. Raffa V, Riggio C, Smith MW, Jordan KC, Cao W, Cuschieri A (2012) Technol Cancer Res Treat 11:459–527

    CAS  Google Scholar 

  5. Wu J, Yin L (2011) ACS Appl Mater Interfaces 3:4354–4362

    Article  CAS  Google Scholar 

  6. Gao Z, Zhi C, Bando Y, Golberg D, Serizawa T (2011) ACS Appl Mater Interfaces 3:627–632

    Article  CAS  Google Scholar 

  7. Zhi CY, Bando Y, Tang CC, Honda S, Sato K, Kuwahara H, Golberg D (2005) Angew Chem Int Ed 44:7929–7932

    Article  CAS  Google Scholar 

  8. Xie SY, Wang W, Fernando KAS, Wang X, Lin Y, Sun YP (2005) Chem Commun 29:3670–3672

    Article  Google Scholar 

  9. Rodríguez Juárez A, Chigo Anota E, Hernández Cocoletzi H, Flores Riveros A (2012) Appl Surf Sci. doi:10.1016/j.apsusc.2012.12.075

  10. Rodríguez Juárez A, Chigo Anota E, Hernández Cocoletzi H (2013) Structural and electronic properties of boron nitride nanotubes-chitosan: effect of point defects. J Mol Graph Model. (in press)

  11. Chigo Anota E, Hernández Rodríguez L D, Rodríguez Juárez A (2013) Appl Surf Sci. (in press)

  12. Chigo Anota E, Rodríguez Juárez A, Castro M, Hernández Cocoletzi H (2013) J Mol Model 19(1):321–328

    Article  Google Scholar 

  13. Zhao J X, Ding Y H (2009) Nanotechnol 20: 085704(1)-(6)

  14. Chigo Anota E, Salazar Villanueva M, Hernández Cocoletzi H (2011) J Nanosci Nanotechnol 11(6):5515–5518

    Article  CAS  Google Scholar 

  15. Chigo Anota E, Salazar Villanueva M, Hernández Cocoletzi H (2010) Phys Stat Solidi C 7(7–8):2252–2254

    Article  Google Scholar 

  16. Chigo Anota E, Salazar Villanueva M, Hernández Cocoletzi H (2010) Phys Stat Solidi C 7(10):2559–2561

    Article  Google Scholar 

  17. Chigo Anota E, Hernández Cocoletzi H, Rubio Rosas E (2011) Eur Phys J D 63:271–273

    Article  CAS  Google Scholar 

  18. Chigo Anota E, Ramírez Gutierrez RE, Escobedo Morales A, Hernández Cocoletzi G (2012) J Mol Model 18(5):2175–2184

    Article  Google Scholar 

  19. Galícia Hernández JM, Hernández Cocoletzi G, Chigo Anota E (2012) J Mol Model 18(1):137–144

    Article  Google Scholar 

  20. Boese AD, Handy NC (2001) J Chem Phys 114:5497–5503

    Article  CAS  Google Scholar 

  21. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  22. Delley B (2000) J Chem Phys 113:7756–7765

    Article  CAS  Google Scholar 

  23. Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799–805

    Google Scholar 

  24. Delley B (2006) Mol Simul 32:117–123

    Article  CAS  Google Scholar 

  25. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  26. Hernández Rosas JJ, Ramírez Gutiérrez RE, Escobedo Morales A, Chigo Anota E (2011) J Mol Model 17(5):1133–1139

    Article  Google Scholar 

  27. Foresman JB, Frisch AE (1996) Exploring chemistry with electronic structure methods. Gaussian Inc, Pittsburgh, p 70

    Google Scholar 

  28. Hao S, Zhou G, Duan W, Wu J, Gu BL (2006) J Am Chem Soc 128:8453–8458

    Article  CAS  Google Scholar 

  29. Xiang H J, Yang J, Hou J G, Zhu Q (2003) Phys Rev B 68: 035427(1)-(5)

  30. Golberg D, Bando Y (2001) Appl Phys Lett 79:415–41

    Article  CAS  Google Scholar 

  31. Miyamoto Y, Zhang H, Rubio A (2010) Phys Rev Lett 105: 248301(1)-(4)

  32. Chigo Anota E, Santos Castillo JR (2013) Structural and electronic properties of the boron nitride nanosheets functionalized with thiol and hydroxyl groups. J Comp Theor Nanosci. (in press)

  33. Kang HS (2006) J Phys Chem B 110:4621–4628

    Article  CAS  Google Scholar 

  34. Blase X, Rubio A, Louie SG, Cohen ML (1994) Europhys Lett 28:335–340

    Article  CAS  Google Scholar 

  35. Arenal R, Stephan O, Kociak M, Taverna D, Loiseau A, Colliex, C (2005) Phys Rev Lett 95:127601(1)-(4)

  36. Li S (2006) Semiconductor physical electronics 2nd edn. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgments

This work was partially supported by projects: VIEP-BUAP (CHAE-ING13-G), Cuerpo Académico Ingeniería en Materiales (BUAP-CA-177), Cuerpo Académico Física Computacional de la Materia Condensada (BUAP-CA-194) and VIEP-BUAP-EXC11-G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Chigo Anota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chigo Anota, E., Cocoletzi, G.H. First-principles simulations of the chemical functionalization of (5,5) boron nitride nanotubes. J Mol Model 19, 2335–2341 (2013). https://doi.org/10.1007/s00894-013-1782-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1782-3

Keywords

Navigation