Skip to main content
Log in

Molecular vibrational spectroscopy characterization of epoxy graphene oxide from density functional calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

To further understand the structure of graphene oxide, several structures of graphene oxide were systematically investigated using density functional theory (DFT). Our models consisted of a hexagonal in-plane structure of graphene with epoxy groups, and different oxidation levels. We found that different arrangements of these units yielded a range of vibrational spectra. Raman positions of the D and G bands depend sensitively on the local atomic configurations. Both structure energy and spectra computations indicate that the oxidation functional groups are energetically favorable to aggregate together and to be close to one another on the opposite side of graphene surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu F, Ming P, Li J (2007) Phys Rev B 76:064120.1–064120.7

    Google Scholar 

  2. Frank IW, Tanenbaum DM, van der Zande AM, McEuen PL (2007) J Vac Sci Tech B 25:2558–2561

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  4. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Science 320:1308–1308

    Article  CAS  Google Scholar 

  5. Wang F, Zhang YB, Tian CS, Girit C, Zettl A, Crommie M, Shen YR (2008) Science 320:206–209

    Article  CAS  Google Scholar 

  6. Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Appl Phys Lett 92:151911.1–151911.3

    Google Scholar 

  7. Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  8. Geim AK, Novoselov KS (2007) Nat Mat 6:183–191

    Article  CAS  Google Scholar 

  9. Landau LD (1937) Phys Z Sowjetunion 11:26–35

    CAS  Google Scholar 

  10. Peierls R (1935) Ann Inst Henri Poincare 5:177–182

    Google Scholar 

  11. Lahaye RJWE, Jeong HK, Park CY, Lee YH (2009) Phys Rev B 79:125435.1–125435.8

    Article  Google Scholar 

  12. Dinh LD, Gunn K, Kyung JH, Young HL (2010) Phys Chem Chem Phys 12:1595–1599

    Article  Google Scholar 

  13. Fuente E, Menéndez JA, Díez MA, Suárez D, Montes-Morán MA (2003) J Phys Chem B 107:6350–6359

    Article  CAS  Google Scholar 

  14. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Nano Lett 8:36–41

    Article  CAS  Google Scholar 

  15. Li ZY, Zhang WH, Luo Y, Yang JL, Hou JG (2009) J Am Chem Soc 131:6320–6321

    Article  CAS  Google Scholar 

  16. Pandey D, Reifenberger R, Piner R (2008) Surf Sci 602:1607–1613

    Article  CAS  Google Scholar 

  17. Li JL, Kudin KN, McAllister MJ, Prud’homme RK, Aksay IA, Car R (2006) Phys Rev Lett 96:176101.1–176101.4

    Google Scholar 

  18. Hofmann U, Holst R (1939) Ber Dtsch Chem Ges 72:754–771

    Article  Google Scholar 

  19. Buchsteiner A, Lerf A, Pieper J (2006) J Phys Chem B 110:22328–22338

    Article  CAS  Google Scholar 

  20. Boukhvalov DW, Katsnelson MI (2008) J Am Chem Soc 130:10697–10701

    Article  CAS  Google Scholar 

  21. Segall MD, Lindan PLD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys Condens Matter 14:2717–2744

    Article  CAS  Google Scholar 

  22. Vosko SJ, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  23. Ceperley DM, Alder BJ (1980) Phys Rev Lett 45:566–569

    Article  CAS  Google Scholar 

  24. Perdew JP, Zunger A (1981) Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  25. Ooi N, Rairkar A, Adams JB (2006) Carbon 44:231–242

    Article  CAS  Google Scholar 

  26. Qin W, Li X, Bian WW, Fan XJ, Qi JY (2010) Biomaterials 31:1007–1016

    Article  CAS  Google Scholar 

  27. Yan JA, Ruan WY, Chou MY (2008) Phys Rev B 77:125401.1–125401.7

    Google Scholar 

  28. Yan JA, Xian L, Chou MY (2009) Phys Rev Lett 103:086802.1–086802.4

    Google Scholar 

  29. Xu Z, Xue K (2010) Nanotechnology 21:045704–045707

    Article  Google Scholar 

  30. Hernández Rosas JJ, Ramírez Gutiérrez RE, Escobedo-Morales A, Chigo Anota E (2011) J Mol Model 17:1133–1139

    Article  Google Scholar 

  31. Hamann DR, Schlüter M, Chiang C (1979) Phys Rev Lett 43:1494–1497

    Article  CAS  Google Scholar 

  32. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  33. Fischer TH, Almlof J (1992) J Phys Chem 96:9768–9774

    Article  CAS  Google Scholar 

  34. He H, Klinowski J, Forster M, Lerf A (1998) Chem Phys Lett 287:53–56

    Article  CAS  Google Scholar 

  35. Lerf A, He H, Forster M, Klinowski J (1998) J Phys Chem B 102:4477–4482

    Article  CAS  Google Scholar 

  36. Cai W, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, Yang D, Velamakanni A, An SJ, Stoller M, An J, Chen D, Ruoff RS (2008) Science 321:1815–1817

    Article  CAS  Google Scholar 

  37. Yan JA, Chou MY (2010) Phys Rev B 82:125403.1–125403.10

    Google Scholar 

  38. Stankovich S, Dikin DA, Piner R, Kohlhaas KM, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  39. Lambert TN, Luhrs CC, Chavez CA, Wakeland S, Brumbach MT, Alam TM (2010) Carbon 48:4081–4089

    Article  CAS  Google Scholar 

  40. Ferrari AC, Robertson J (2000) Phys Rev B 61:14095–14107

    Article  CAS  Google Scholar 

  41. Akhavan O (2010) Carbon 48:509–519

    Article  CAS  Google Scholar 

  42. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  43. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Phys Rev Lett 97:187401.1–187401.4

    Google Scholar 

  44. Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L (2007) Nano Lett 7:238–242

    Article  CAS  Google Scholar 

  45. Bulat FA, Burgess JS, Matis BR, Baldwin JW, Macaveiu L, Murray JS, Politzer P (2012) J Phys Chem A 116:8644–8652

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research used computational resources at the China Academy of Engineering Physics. This work is supported by the National Natural Science Foundation of China (Grant No. 41272051) and the Postgraduate Innovation Fund sponsored by Southwest University of Science and Technology (Grant No.12ycjj22). It is also supported by the Doctoral Fund of Southwest University of Science and Technology (Grant No.11ZX7135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjuan Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Sun, H., Peng, T. et al. Molecular vibrational spectroscopy characterization of epoxy graphene oxide from density functional calculations. J Mol Model 19, 1429–1434 (2013). https://doi.org/10.1007/s00894-012-1701-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1701-z

Keywords

Navigation