Skip to main content
Log in

Regulation of the transient receptor potential channel TRPA1 by its N-terminal ankyrin repeat domain

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The transient receptor potential channel A1 (TRPA1) is unique among ion channels of higher vertebrates in that it harbors a large ankyrin repeat domain. The TRPA1 channel is expressed in the inner ear and in nociceptive neurons. It is involved in hearing as well as in the perception of pungent and irritant chemicals. The ankyrin repeat domain has special mechanical properties, which allows it to function as a soft spring that can be extended over a large range while maintaining structural integrity. A calcium-binding site has been experimentally identified within the ankyrin repeats. We built a model of the N-terminal 17 ankyrin repeat structure, including the calcium-binding EF-hand. In our simulations we find the calcium-bound state to be rigid as compared to the calcium-free state. While the end-to-end distance can change by almost 50% in the apo form, these fluctuations are strongly reduced by calcium binding. This increase in stiffness that constraints the end-to-end distance in the holo form is predicted to affect the force acting on the gate of the TRPA1 channel, thereby changing its open probability. Simulations of the transmembrane domain of TRPA1 show that residue N855, which has been associated with familial episodic pain syndrome, forms a strong link between the S4-S5 connecting helix and S1, thereby creating a direct force link between the N-terminus and the gate. The N855S mutation weakens this interaction, thereby reducing the communication between the N-terminus and the transmembrane part of TRPA1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW et al. (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  CAS  Google Scholar 

  2. Corey DP, García-Añoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung ELM, Derfler BH, Duggan A et al. (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730

    Article  CAS  Google Scholar 

  3. Gaudet R (2008) A primer on ankyrin repeat function in TRP channels and beyond. Mol Biosyst 4:372–379

    Article  CAS  Google Scholar 

  4. Sotomayor M, Corey DP, Schulten K (2005) In search of the hair-cell gating spring elastic properties of ankyrin and cadherin repeats. Structure 13:669–682

    Article  CAS  Google Scholar 

  5. García-Añoveros J, Nagata K (2007) TRPA1. Handbook of experimental pharmacology. doi:10.1007/978-3-540-34891-7_21

  6. Hinman A, Chuang HH, Bautista DM, Julius D (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci USA 103:19564–19568

    Article  CAS  Google Scholar 

  7. Lux SE, John KM, Bennett V (1990) Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature 344:36–42

    Article  CAS  Google Scholar 

  8. Breeden L, Nasmyth K (1987) Similarity between cell-cycle genes of budding yeast and fission yeast and the Notch gene of Drosophila. Nature 329:651–654

    Article  CAS  Google Scholar 

  9. Lee G, Abdi K, Jiang Y, Michaely P, Bennett V, Marszalek PE (2006) Nanospring behaviour of ankyrin repeats. Nature 440:246–249

    Article  CAS  Google Scholar 

  10. Cavanaugh EJ, Simkin D, Kim D (2008) Activation of transient receptor potential A1 channels by mustard oil, tetrahydrocannabinol and Ca2+ reveals different functional channel states. Neuroscience 154:1467–1476

    Article  CAS  Google Scholar 

  11. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445:541–545

    Article  CAS  Google Scholar 

  12. Sawada Y, Hosokawa H, Matsumura K, Kobayashi S (2008) Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur J Neurosci 27:1131–1142

    Article  Google Scholar 

  13. Taylor-Clark TE, Kiros F, Carr MJ, McAlexander MA (2009) Transient receptor potential ankyrin 1 mediates toluene diisocyanate-evoked respiratory irritation. Am J Resp Cell Mol 40:756–762

    Article  CAS  Google Scholar 

  14. Birrell MA, Belvisi MG, Grace M, Sadofsky L, Faruqi S, Hele DJ, Maher SA, Freund-Michel V, Morice AH (2009) TRPA1 agonists evoke coughing in guinea pig and human volunteers. Am J Respir Crit Care 180:1042–1047

    Article  CAS  Google Scholar 

  15. Taylor-Clark TE, Undem BJ (2010) Ozone activates airway nerves via the selective stimulation of TRPA1 ion channels. J Physiol 588:423–433

    Article  CAS  Google Scholar 

  16. Bessac BF, Sivula M, von Hehn CA, Caceres AI, Escalera J, Jordt SE (2009) Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases. FASEB J 23:1102–1114

    Article  CAS  Google Scholar 

  17. Doerner JF, Gisselmann G, Hatt H, Wetzel CH (2007) Transient receptor potential channel A1 is directly gated by calcium ions. J Biol Chem 282:13180–9

    Article  CAS  Google Scholar 

  18. Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA (2007) Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci 10:277–279

    Article  CAS  Google Scholar 

  19. Kim D, Cavanaugh EJ, Simkin D (2008) Inhibition of transient receptor potential A1 channel by phosphatidylinositol-4,5-bisphosphate. Am J Physiol Cell Ph 295:C92–99

    Article  CAS  Google Scholar 

  20. Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117:1979–1987

    Article  CAS  Google Scholar 

  21. Li L, Wetzel S, Plückthun A, Fernandez JM (2006) Stepwise unfolding of ankyrin repeats in a single protein revealed by atomic force microscopy. Biophys J 90:L30–2

    Article  CAS  Google Scholar 

  22. Serquera D, Lee W, Settanni G, Marszalek PE, Paci E, Itzhaki LS (2010) Mechanical unfolding of an ankyrin repeat protein. Biophys J 98:1294–1301

    Article  CAS  Google Scholar 

  23. Michaely P, Tomchick DR, Machius M, Anderson RGW (2002) Crystal structure of a 12 ANK repeat stack from human ankyrinR. EMBO J 21:6387–6396

    Article  CAS  Google Scholar 

  24. Rost B, Yachdav G, Liu J (2004) The predictprotein server. Nucleic Acids Res 32:W321–6

    Article  CAS  Google Scholar 

  25. Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–248

    Article  Google Scholar 

  26. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinforma 9:40

    Article  Google Scholar 

  27. Bennett-Lovsey RM, Herbert AD, Sternberg MJE, Kelley LA (2008) Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins 70:611–625

    Article  CAS  Google Scholar 

  28. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al. (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  29. Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  30. Korndörfer IP, Brueckner F, Skerra A (2007) The crystal structure of the human (S100A8/S100A9)2 heterotetramer, calprotectin, illustrates how conformational changes of interacting alpha-helices can determine specific association of two EF-hand proteins. J Mol Biol 370:887–898

    Article  Google Scholar 

  31. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  32. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–10

    Article  Google Scholar 

  33. Chen X, Wang Q, Ni F, Ma J (2010) Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement. Proc Natl Acad Sci USA 107:11352–11357

    Article  CAS  Google Scholar 

  34. Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

    CAS  Google Scholar 

  35. Hofmann K, Stoffel W (1993) TMBASE - a database of membrane spanning protein segments. Biol Chem 374:166–170

    Google Scholar 

  36. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  Google Scholar 

  37. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma 5:113

    Article  Google Scholar 

  38. Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA–a self-parameterizing force field. Proteins 47:393–402

    Article  CAS  Google Scholar 

  39. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) In: Intermolecular Force. B. Pullman (ed.), Reidel, Dordrecht, pp 331-342

  40. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comput 4:435–447

    Article  CAS  Google Scholar 

  41. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  42. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  43. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  44. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  45. Kandt C, Ash WL, Tieleman DP (2007) Setting up and running molecular dynamics simulations of membrane proteins. Methods 41:475–488

    Article  CAS  Google Scholar 

  46. Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013.47

    Article  CAS  Google Scholar 

  47. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  48. http://lists.gromacs.org/pipermail/gmx-developers/2008-March/002422.html and http://www.pomeslab.com/files/lipidCombinationRules.pdf

  49. Nilius B, Owsianik G, Voets T (2008) Transient receptor potential channels meet phosphoinositides. EMBO J 27:2809–2816

    Article  CAS  Google Scholar 

  50. Qin F (2007) Regulation of TRP ion channels by phosphatidylinositol-4,5-bisphosphate. Handbook of experimental pharmacology. doi:10.1007/978-3-540-34891-7_30

  51. Karashima Y, Prenen J, Meseguer V, Owsianik G, Voets T, Nilius B (2008) Modulation of the transient receptor potential channel TRPA1 by phosphatidylinositol 4,5-biphosphate manipulators. Pflügers Arch: E J Physiol 457:77–89

    Article  CAS  Google Scholar 

  52. van Rossum DB, Patterson RL, Sharma S, Barrow RK, Kornberg M, Gill DL, Snyder SH (2005) Phospholipase Cgamma1 controls surface expression of TRPC3 through an intermolecular PH domain. Nature 434:99–104

    Article  Google Scholar 

  53. Wen W, Yan J, Zhang M (2006) Structural characterization of the split pleckstrin homology domain in phospholipase C-gamma1 and its interaction with TRPC3. J Biol Chem 281:12060–8

    Article  CAS  Google Scholar 

  54. Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH (2002) CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 30:281–283

    Article  CAS  Google Scholar 

  55. Haslam RJ, Koide HB, Hemmings BA (1993) Pleckstrin domain homology. Nature 363:309–310

    Article  CAS  Google Scholar 

  56. Jia J, Borregaard N, Lollike K, Cygler M (2001) Structure of Ca(2+)-loaded human grancalcin. Acta Crystallogr D 57:1843–1849

    Article  CAS  Google Scholar 

  57. Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5:789–796. doi:10.1038/nchembio.232

    Article  CAS  Google Scholar 

  58. Stockner T, Vogel HJ, Tieleman DP (2005) A salt-bridge motif involved in ligand binding and large-scale domain motions of the maltose-binding protein. Biophys J 89:3362–3371

    Article  CAS  Google Scholar 

  59. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  CAS  Google Scholar 

  60. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    Article  CAS  Google Scholar 

  61. Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Högestätt ED, Julius D, Jordt SE, Zygmunt PM (2005) Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci USA 102:12248–12252

    Article  CAS  Google Scholar 

  62. Nagata K, Duggan A, Kumar G, García-Añoveros J (2005) Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 25:4052–4061

    Article  CAS  Google Scholar 

  63. Wang YY, Chang RB, Waters HN, McKemy DD, Liman ER (2008) The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J Biol Chem 283:32691–32703

    Article  CAS  Google Scholar 

  64. Hu H, Bandell M, Petrus MJ, Zhu MX, Patapoutian A (2009) Zinc activates damage-sensing TRPA1 ion channels. Nature Chem Biol 5:183–190

    Article  CAS  Google Scholar 

  65. Kremeyer B, Lopera F, Cox JJ, Momin A, Rugiero F, Marsh S, Woods CG, Jones NG, Paterson KJ, Fricker FR et al. (2010) A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66:671–680

    Article  CAS  Google Scholar 

  66. Cvetkov TL, Huynh KW, Cohen MR, Moiseenkova-Bell VY (2011) Molecular architecture and subunit organization of TRPA1 channel revealed by electron microscopy. J Biol Chem 286:38168–38176

    Article  CAS  Google Scholar 

  67. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  68. Pintilie GD, Zhang J, Goddard TD, Chiu W, Gossard DC (2010) Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. J Struct Biol 170(3):427–438

    Article  CAS  Google Scholar 

  69. Strawn R, Melichercik M, Green M, Stockner T, Carey J, Ettrich R (2010) Symmetric allosteric mechanism of hexameric Escherichia coli arginine repressor exploits competition between L-arginine ligands and resident arginine residues. PLoS Comput Biol 6(6):e1000801

    Article  Google Scholar 

  70. Benedikt J, Samad A, Ettrich R, Teisinger J, Vlachova V (2009) Essential role for the putative S6 inner pore region in the activation gating of the human TRPA1 channel. Biochim Biophys Acta 1793:1279–88.72

    Article  CAS  Google Scholar 

  71. Samad A, Sura L, Benedikt J, Ettrich R, Minofar B, Teisinger J, Vlachova V (2010) The C-terminal basic residues contribute to the chemical- and voltage-dependent activation of TRPA1. Biochem J 433:197–204

    Article  Google Scholar 

  72. Wang L, Cvetkov TL, Chance MR, Moiseenkova-Bell VY (2012) Identification of in vivo disulfide conformation of TRPA1 ion channel. J Biol Chem 287:6169–6176

    Article  CAS  Google Scholar 

  73. Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411

    Article  CAS  Google Scholar 

  74. Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202

    Article  CAS  Google Scholar 

  75. Hudspeth AJ (1982) Extracellular current flow and the site of transduction by vertebrate hair cells. J Neurosci 2:1–10

    CAS  Google Scholar 

  76. Gillespie PG, Wagner MC, Hudspeth AJ (1993) Identification of a 120 kd hair-bundle myosin located near stereociliary tips. Neuron 11:581–94

    Article  CAS  Google Scholar 

  77. García JA, Yee AG, Gillespie PG, Corey DP (1998) Localization of myosin-Ibeta near both ends of tip links in frog saccular hair cells. J Neurosci 18:8637–8647

    Google Scholar 

  78. Holt JR, Gillespie SKH, Provance DW, Shah K, Shokat KM, Corey DP, Mercer JA, Gillespie PG (2002) A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108:371–381

    Article  CAS  Google Scholar 

  79. Howard J, Hudspeth AJ (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1:189–199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the Ministry of Education, Youth and Sports of the Czech Republic (projects No. ME09062 and MSM6007665808), the Academy of Sciences of the Czech Republic (AVOZ60870520), and the Czech Science Foundation, grant P207/10/1934. VZ is supported by the University of South Bohemia, grant GAJU 170/2010/P. Access to the National Grid Infrastructure -MetaCentrum- is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Stockner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2406 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zayats, V., Samad, A., Minofar, B. et al. Regulation of the transient receptor potential channel TRPA1 by its N-terminal ankyrin repeat domain. J Mol Model 19, 4689–4700 (2013). https://doi.org/10.1007/s00894-012-1505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1505-1

Keywords

Navigation