Skip to main content

Advertisement

Log in

Modulation of the transient receptor potential channel TRPA1 by phosphatidylinositol 4,5-biphosphate manipulators

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The transient receptor potential channel of the ankyrin-binding repeat subfamily, TRPA1, is a Ca2+-permeable non-selective cation channel that depolarizes the plasma membrane and causes Ca2+ influx. A typical feature of TRPA1 is its rapid desensitization following activation by agonists such as mustard oil (MO), cinnamaldehyde, and a high intracellular Ca2+ concentration. In whole-cell recordings on Chinese hamster ovary (CHO) cells expressing TRPA1, desensitization was delayed when phosphatidylinositol 4,5-biphosphate (PIP2) was supplemented via the patch pipette, whereas the PIP2 scavenger neomycin accelerated desensitization. Preincubation with the PI-4 kinase inhibitor wortmannin reduced both constitutive TRPA1 channels activity and the response to MO. Run down was also accelerated by high intracellular Mg2+ concentrations, whereas chelating intracellular Mg2+ with 10 mM ethylenedinitrilotetraacetic acid (EDTA) increased the basal channel activity. In inside-out patches, we observed a rapid run down of TRPA1 activity, which could be prevented by application of diC8-PIP2 or 2 mM Mg-ATP but not Na2-ATP to the cytosolic side of the excised patches. In isolated trigeminal ganglion neurons, preincubation with wortmannin resulted in inhibition of endogenous TRPA1 activation by MO. Taken together, our data indicate that PIP2 modulates TRPA1, albeit to a lesser extent than other known PIP2-dependent TRP channels, and that tools modifying the plasma membrane PIP2 content often have direct effects on this channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akopian AN, Ruparel NB, Jeske NA, Hargreaves KM (2007) TRPA1 desensitization in sensory neurons is agonist-dependent and regulated by TRPV1-directed internalization. J Physiol 583:175–193

    Article  PubMed  CAS  Google Scholar 

  2. Balla T (2001) Pharmacology of phosphoinositides, regulators of multiple cellular functions. Curr Pharm Des 7:475–507

    Article  PubMed  CAS  Google Scholar 

  3. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–57

    Article  PubMed  CAS  Google Scholar 

  4. Bang S, Kim KY, Yoo S, Kim YG, Hwang SW (2007) Transient receptor potential A1 mediates acetaldehyde-evoked pain sensation. Eur J Neurosci 26:2516–23

    Article  PubMed  Google Scholar 

  5. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–82

    Article  PubMed  CAS  Google Scholar 

  6. Bleasdale JE, Thakur NR, Gremban RS, Bundy GL, Fitzpatrick FA, Smith RJ, Bunting S (1990) Selective inhibition of receptor-coupled phospholipase C-dependent processes in human platelets and polymorphonuclear neutrophils. J Pharmacol Exp Ther 255:756–768

    PubMed  CAS  Google Scholar 

  7. Caterina MJ (2007) Chemical biology: sticky spices. Nature 445:491–492

    Article  PubMed  CAS  Google Scholar 

  8. Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962

    Article  PubMed  CAS  Google Scholar 

  9. Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Geleoc GS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730

    Article  PubMed  CAS  Google Scholar 

  10. Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117:1978–1987

    Google Scholar 

  11. Doerner JF, Gisselmann G, Hatt H, Wetzel CH (2007) Transient receptor potential channel A1 is directly gated by calcium ions. J Biol Chem 282:13180–13189

    Article  PubMed  CAS  Google Scholar 

  12. Gabev E, Kasianowicz J, Abbott T, McLaughlin S (1989) Binding of neomycin to phosphatidylinositol 4,5-bisphosphate (PIP2). Biochim Biophys Acta 979:105–112

    Article  PubMed  CAS  Google Scholar 

  13. Garcia-Morales P, Minami Y, Luong E, Klausner RD, Samelson LE (1990) Tyrosine phosphorylation in T cells is regulated by phosphatase activity: studies with phenylarsine oxide. Proc Natl Acad Sci U S A 87:9255–9259

    Article  PubMed  CAS  Google Scholar 

  14. Hardie RC, Raghu P, Moore S, Juusola M, Baines RA, Sweeney ST (2001) Calcium influx via TRP channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron 30:149–159

    Article  PubMed  CAS  Google Scholar 

  15. Hecht D, Zick Y (1992) Selective inhibition of protein tyrosine phosphatase activities by H2O2 and vanadate in vitro. Biochem Biophys Res Commun 188:773–779

    Article  PubMed  CAS  Google Scholar 

  16. Hilgemann DW, Feng S, Nasuhoglu C (2001) The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001:RE19

    Article  PubMed  CAS  Google Scholar 

  17. Hinman A, Chuang H-H, Bautista DM, Julius D (2007) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A 103:19564–19568

    Article  Google Scholar 

  18. Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391:803–806

    Article  PubMed  CAS  Google Scholar 

  19. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  PubMed  CAS  Google Scholar 

  20. Karashima Y, Damann N, Prenen J, Talavera K, Segal A, Voets T, Nilius B (2007) Bimodal action of menthol on the transient receptor potential channel TRPA1. J Neurosci 27:9874–9884

    Article  PubMed  CAS  Google Scholar 

  21. Katsura H, Obata K, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Sakagami M, Noguchi K (2006) Antisense knock down of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve ligation in rats. Exp Neurol 200:112–123

    PubMed  CAS  Google Scholar 

  22. Khvotchev M, Sudhof TC (1998) Newly synthesized phosphatidylinositol phosphates are required for synaptic norepinephrine but not glutamate or gamma-aminobutyric acid (GABA) release. J Biol Chem 273:21451–21454

    Article  PubMed  CAS  Google Scholar 

  23. Kim D, Cavanaugh EJ (2007) Requirement of a soluble intracellular factor for activation of transient receptor potential A1 by pungent chemicals: role of inorganic polyphosphates. J Neurosci 27:6500–6509

    Article  PubMed  CAS  Google Scholar 

  24. Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–289

    Article  PubMed  CAS  Google Scholar 

  25. Laux T, Fukami K, Thelen M, Golub T, Frey D, Caroni P (2000) GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol 149:1455–1472

    Article  PubMed  CAS  Google Scholar 

  26. Lee J, Cha SK, Sun TJ, Huang CL (2005) PIP2 activates TRPV5 and releases its inhibition by intracellular Mg2+. J Gen Physiol 126:439–451

    Article  PubMed  CAS  Google Scholar 

  27. Liu B, Qin F (2005) Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J Neurosci 25:1674–1681

    Article  PubMed  CAS  Google Scholar 

  28. Liu D, Liman ER (2003) Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci U S A 100:15160–15165

    Article  PubMed  CAS  Google Scholar 

  29. Lopes CM, Zhang H, Rohacs T, Jin T, Yang J, Logothetis DE (2002) Alterations in conserved Kir channel–PIP2 interactions underlie channelopathies. Neuron 34:933–944

    Article  PubMed  CAS  Google Scholar 

  30. Lukacs V, Thyagarajan B, Varnai P, Balla A, Balla T, Rohacs T (2007) Dual regulation of TRPV1 by phosphoinositides. J Neurosci 27:7070–7080

    Article  PubMed  CAS  Google Scholar 

  31. Ma R, Li WP, Rundle D, Kong J, Akbarali HI, Tsiokas L (2005) PKD2 functions as an epidermal growth factor-activated plasma membrane channel. Mol Cell Biol 25:8285–8298

    Article  PubMed  CAS  Google Scholar 

  32. Macpherson L, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Patapoutian A (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol 15:929–934

    Article  PubMed  CAS  Google Scholar 

  33. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445:541–545

    Article  PubMed  CAS  Google Scholar 

  34. Macpherson LJ, Hwang SW, Miyamoto T, Dubin AE, Patapoutian A, Story GM (2006) More than cool: promiscuous relationships of menthol and other sensory compounds. Mol Cell Neurosci 32:335–343

    Article  PubMed  CAS  Google Scholar 

  35. Macpherson LJ, Xiao B, Kwan KY, Petrus MJ, Dubin AE, Hwang SW, Cravatt B, Corey DP, Patapoutian A (2007) An ion channel essential for sensing chemical damage. J Neurosciences 27:11412–11415

    Article  CAS  Google Scholar 

  36. Madrid R, Donovan-Rodriguez T, Meseguer V, Acosta MC, Belmonte C, Viana F (2006) Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals. J Neurosci 26:12512–12525

    Article  PubMed  CAS  Google Scholar 

  37. Maher M, Ao H, Banke T, Nasser N, Wu N-T, Breitenbucher G, Chaplan S, Wickenden AD (2008) Activation of TRPA1 by farnesyl thiosalicylic acid. Mol Pharmacology 73:1225–1234

    Google Scholar 

  38. Nagata K, Duggan A, Kumar G, Garcia-Anoveros J (2005) Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 25:4052–4061

    Article  PubMed  CAS  Google Scholar 

  39. Nakanishi S, Catt KJ, Balla T (1995) A wortmannin-sensitive phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of inositolphospholipids. Proc Natl Acad Sci U S A 92:5317–5321

    Article  PubMed  CAS  Google Scholar 

  40. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T (2006) The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25:467–478

    Article  PubMed  CAS  Google Scholar 

  41. Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Tominaga M, Noguchi K (2005) TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest 115:2393–2401

    Article  PubMed  CAS  Google Scholar 

  42. Otsuguro KI, Tang J, Tang Y, Xiao R, Freichel M, Tsvilovskyy V, Ito S, Flockerzi V, Zhu MX, Zholos AV (2008) Isoform-specific inhibition of TRPC4 channel by phosphatidylinositol 4,5-bisphosphate. J Biol Chem (in press)

  43. Patapoutian A, Peier AM, Story GM, Viswanath V (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4:529–539

    Article  PubMed  CAS  Google Scholar 

  44. Peterlin Z, Chesler A, Firestein S (2007) A painful Trp can be a bonding experience. Neuron 53:635–638

    Article  PubMed  CAS  Google Scholar 

  45. Rauch ME, Ferguson CG, Prestwich GD, Cafiso DS (2002) Myristoylated alanine-rich C kinase substrate (MARCKS) sequesters spin-labeled phosphatidylinositol 4,5-bisphosphate in lipid bilayers. J Biol Chem 277:14068–14076

    Article  PubMed  CAS  Google Scholar 

  46. Rohacs T (2007) Regulation of TRP channels by PIP2. Pflugers Arch 453:753–762

    Article  PubMed  CAS  Google Scholar 

  47. Rohacs T, Lopes CM, Michailidis I, Logothetis DE (2005) PI(4,5)P(2) regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8:626–634

    Article  PubMed  CAS  Google Scholar 

  48. Rohacs T, Nilius B (2007) Regulation of transient receptor potential (trp) channels by phosphoinositides. Pflügers Arch 455:157–168

    Article  PubMed  CAS  Google Scholar 

  49. Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 4:329–336

    PubMed  CAS  Google Scholar 

  50. Sawada Y, Hosokawa H, Hori A, Matsumura K, Kobayashi S (2007) Cold sensitivity of recombinant TRPA1 channels. Brain Res 1160:39–46

    Article  PubMed  CAS  Google Scholar 

  51. Sims C, Harvey RD (2004) Redox modulation of basal and beta-adrenergically stimulated cardiac l-type Ca(2+) channel activity by phenylarsine oxide. Br J Pharmacol 142:797–807

    Article  PubMed  CAS  Google Scholar 

  52. Smith RJ, Sam LM, Justen JM, Bundy GL, Bala GA, Bleasdale JE (1990) Receptor-coupled signal transduction in human polymorphonuclear neutrophils: effects of a novel inhibitor of phospholipase C-dependent processes on cell responsiveness. J Pharmacol Exp Ther 253:688–697

    PubMed  CAS  Google Scholar 

  53. Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 128:509–522

    Article  PubMed  CAS  Google Scholar 

  54. Stokes A, Wakano C, Koblan-Huberson M, Adra CN, Fleig A, Turner H (2006) TRPA1 is a substrate for de-ubiquitination by the tumor suppressor CYLD. Cell Signal 18:1584–1594

    Article  PubMed  CAS  Google Scholar 

  55. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  PubMed  CAS  Google Scholar 

  56. Suh BC, Hille B (2005) Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol 15:370–378

    Article  PubMed  CAS  Google Scholar 

  57. Suh BC, Hille B (2007) Electrostatic interaction of internal Mg2+ with membrane PIP2 seen with KCNQ K+ channels. J Gen Physiol 130:241–256

    Article  PubMed  CAS  Google Scholar 

  58. Taylor-Clark TE, Undem BJ, Macglashan Jr DW, Ghatta S, Carr MJ, McAlexander MA (2007) Prostaglandin-induced activation of nociceptive neurons via direct interaction with TRPA1. Mol Pharmacol 73:274–281

    Article  PubMed  CAS  Google Scholar 

  59. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD (2001) Synthesis and function of 3-phosphorylated inositol lipids. Ann Rev Biochem 70:535–602

    Article  PubMed  CAS  Google Scholar 

  60. Webb J (1966) Arsenicals, vol. 3. Academic, New York

    Google Scholar 

  61. Wiedemann C, Schafer T, Burger MM, Sihra TS (1998) An essential role for a small synaptic vesicle-associated phosphatidylinositol 4-kinase in neurotransmitter release. J Neurosci 18:5594–5602

    PubMed  CAS  Google Scholar 

  62. Zhang H, Craciun LC, Mirshahi T, Rohacs T, Lopes CM, Jin T, Logothetis DE (2003) PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37:963–975

    Article  PubMed  CAS  Google Scholar 

  63. Zhang Z, Okawa H, Wang Y, Liman ER (2005) Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J Biol Chem 280:39185–39192

    Article  PubMed  CAS  Google Scholar 

  64. Zheng Q, McFadden SC, Bobich JA (2004) Phosphatidylinositol 4,5-bisphosphate promotes both [3H]-noradrenaline and [14C]-glutamate exocytosis from nerve endings. Neurochem Int 44:243–250

    Article  PubMed  CAS  Google Scholar 

  65. Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA (2007) Direct activation of the ion channel TRPA1 by Ca(2+). Nat Neurosci 10:277–279

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. A. Segal, R. Vennekens, K. Talavera, D. D'hoedt, N. Damann, and T. Shimizu for very helpful discussions and A. Janssens and M. Benoit for technical assistance. This work was supported by the Human Frontiers Science Programme (HFSP Research Grant Ref. RGP 32/2004), the Belgian Federal Government, the Flemish Government, the Onderzoeksraad KU Leuven (GOA 99/07, F.W.O. G.0214.99, F.W.O. G. 0136.00; F.W.O. G.0172.03, Interuniversity Poles of Attraction Program, Prime Ministers Office IUAP) and the Excellentiefinanciering (EF/95/010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Nilius.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Effect of PAO on whole-cell currents through TRPA1. (A) Time course of whole-cell currents at +80 mV (open squares) and −80 mV (open circles) elicited by 1 μM PAO. (B) Current–voltage (IV) relations obtained at the indicated time shown in (A) (GIF 33.5 kb).

High resolution image (TIF 484 KB)

Supplementary Figure 2

Effect of Mg2+ on TRPA1 activity in inside-out patches. In this examples, bath solution contained (in mM) 150 CsCl, 1 MgCl2, 1 sodium triphosphate, 5 EGTA, 10 glucose and 10 HEPES. [Ca2+]i was buffered at 250 nM. Pipette solution contained (in mM) 150 NaCl, 1 MgCl2, 10 glucose, and 10 HEPES. Application of 10 mM Mg2+ immediately inhibited channel activity which slowly recovered. Note that in these experiments we excised the patch in sodium triphosphate PPPi to delay channel run down as described elsewhere [1]. In all five tested cells, 10 mM Mg2+ nearly completely abolished channel activity (before excision P open = 0.42 ± 0.12, during Mg2+ application P open = 0.002 ± 0.001, after wash out of Mg2+ channel activity partially recovered to P open = 0.09±0.01) (GIF 91.7 kb).

High resolution image (TIF 854 KB)

Supplementary Figure 3

Desensitization of TRPA1 also occurs in cell-attached patches. (A) Single channel currents through TRPA1 were measured in cell-attached patches. The averaged current was obtained from three consecutive sweeps at −80 mV. Note the fast current activation by application of MO from outside and the following decay. Channels were constitutive active before application of MO (point a, and panel (B), a). (B) Individual single channel currents during voltage ramps from −100 to +100 mV obtained at the time points marked in (A) (GIF 116 kb).

High resolution image (TIF 669 KB)

Supplementary Figure 4

Activation of TRPA1 by MO in inside-out patches. (A) Single channel currents through TRPA1 were measured after excision in an inside-out patch. Channel activity remained more than 3 min after excision (single channel patch, +60 mV, γ = 90 pS). (B) At +60 mV, open probability was 0.21, mean open time 4.3 ms and closed could only be described by two exponentials indicating long closings between burst-like openings. (C) Application of 200 μM MO to the inner side of the excised patch induced clearly channel activation (+60 mV, γ = 88 pS). (D) Open probability increased to 0.82 mainly due to the disappearance of long closings (same results obtained in six patches). Data indicate that at least in a fraction of excised patches MO can still activate TRPA1 at variance with [1] (GIF 138 kb).

High resolution image (TIF 949 KB)

Supplementary Figure 5

Effect of polylysin on TRPA1 activity in inside-out patches. (A) Single channel openings in a patch clamped at −60 mV and the resulting amplitude histogram (γ = 91 pS, P open increased from 0.43 to 0.92, obtained from the Gaussian fits). (B) Distribution of the open times fitted with a bi-exponential function. A short mean open time of 2.8 ms and a long mean open time of 44.9 ms were calculated. Distribution of the closed times. Note that also two components were found. (C) Same patch and same protocol as in (A) but polylysin is applied to the inner side of the membrane. Note the increased open probability. (D) The open time distribution shows an increased fraction of long openings in the presence of polylysin. The closed time distribution lacks the long closings. This effect causes the increase in open probability in the presence of polylysin via an unknown mechanism (GIF 143 kb).

High resolution image (TIF 960 KB)

Supplementary Figure 6

Predicted topology of TRPA1. (A) Cartoon of the TRPA1 structure. The 14 ANK domains are shown in the N-terminus and pleckstrin homology (PH)-like domains are indicated by the blue bars. PH-like domains are predicted according to the consensus sequence: [R/K]-X3–11-[R/K]-X-[R/K]-[R/K] (2). The TRP box-like motif (L995WYLRK) shares a partial homology to TRP boxes of other TRP channels (see for details on TRP boxes 3). (B) Alignment of the PH-like domains with respective domains found in TRPM4 (2). References: (1) Kim D, Cavanaugh EJ (2007) Requirement of a soluble intracellular factor for activation of transient receptor potential A1 by pungent chemicals: role of inorganic polyphosphates. Journal of NeuroScience 27:6500–9. (2) Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T (2006) The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO Journal 25:467–78. (3) Owsianik G, D’Hoedt D, Voets T, Nilius B (2006) Structure–function relationship of the TRP channel superfamily. Reviews of Physiology Biochemistry and Pharmacology 156:61–90. (GIF 48.4 kb)

High resolution image (TIF 681 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karashima, Y., Prenen, J., Meseguer, V. et al. Modulation of the transient receptor potential channel TRPA1 by phosphatidylinositol 4,5-biphosphate manipulators. Pflugers Arch - Eur J Physiol 457, 77–89 (2008). https://doi.org/10.1007/s00424-008-0493-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0493-6

Keywords

Navigation