Skip to main content
Log in

Correlation between biological activity and binding energy in systems of integrin with cyclic RGD-containing binders: a QM/MM molecular dynamics study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We here report a combined quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) study on the binding interactions between the αVβ3 integrin and eight cyclic arginine-glycine-aspartate (RGD) containing peptides. The initial conformation of each peptide within the binding site of the integrin was determined by docking the ligand to the reactive site of the integrin crystal structure with the aid of docking software FRED. The subsequent QM/MM MD simulations of the complex structures show that these eight cyclic RGD-peptides have a generally similar interaction mode with the binding site of the integrin to the cyclo(RGDf-N[M]V) analog found in the crystal structure. Still, there are subtle differences in the interactions of peptide ligands with the integrin, which contribute to the different inhibition activities. The averaged QM/MM protein-ligand interaction energy (IE) is remarkably correlated to the biological activity of the ligand. The IE, as well as a three-variable model which is somewhat interpretable, thus can be used to predict the bioactivity of a new ligand quantitatively, at least within a family of analogs. The present study establishes a helpful protocol for advancing lead compounds to potent inhibitors.

Initial conformations of the studied eight cyclic RGD-containing binders which have a generally similar interaction mode with the binding site of the integrin to the cyclo(RGDf-N[M]V) analog found in the crystal structure (PDB ID:1L5G)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  Google Scholar 

  2. Zanardi F, Burreddu P, Rassu G, Auzzas L, Battistini L, Curti C et al. (2008) Discovery of subnanomolar arginine-glycine-aspartate-based αVβ3Vβ5 integrin binders embedding 4-aminoproline residues. J Med Chem 51(6):1771–1782

    Article  CAS  Google Scholar 

  3. Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL et al (2001) Crystal structure of the extracellular segment of integrin αVβ3. Science 294(5541):339–345

    Article  CAS  Google Scholar 

  4. Arnaout MA, Goodman SL, Xiong JP (2002) Coming to grips with integrin binding to ligands. Current Opin Cell Biol 14(5):641–652

    Article  CAS  Google Scholar 

  5. Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL et al. (2002) Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 296:151–155

    Article  CAS  Google Scholar 

  6. Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119:3901–3903

    Article  CAS  Google Scholar 

  7. Spitaleri A, Mari S, Curnis F, Traversari C, Longhi R, Bordignon C et al. (2008) Structural basis for the interaction of isoDGR with the RGD-binding site of αvβ3 integrin. J Biol Chem 283(28):19757–19768

    Article  CAS  Google Scholar 

  8. Jin H, Varner J (2004) Integrins: roles in cancer development and as treatment targets. Brit J Cancer 90(3):561–565

    Article  CAS  Google Scholar 

  9. Bella J, Humphries MJ (2005) Cα -H···O = C hydrogen bonds contribute to the specificity of RGD cell-adhesion interactions. BMC Struct Biol 5:4

    Article  Google Scholar 

  10. Paradise RK, Lauffenburger DA, van Vliet KJ (2011) Acidic extracellular pH promotes activation of integrin αvβ3. PloS one 6(1):e15746

    Article  CAS  Google Scholar 

  11. Elliot D, Henshaw E, MacFaul PA, Morley AD, Newham P, Oldham K et al. (2009) Novel inhibitors of the αvβ3 integrin-lead identification strategy. Bioorg Med Chem Lett 19:4832–4835

    Article  CAS  Google Scholar 

  12. Sukopp M, Marinelli L, Heller M, Brandl T, Goodman SL, Hoffmann RW et al (2002) Designed beta turn mimic based on the allylic strain concept: evaluation of structural and biological features by incorporation into a cyclic RGD peptide (Cyclo(-L-arginylglycyl-L- α-aspartyl-)). Helv Chim Acta 85(12):4442–4452

    Article  CAS  Google Scholar 

  13. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M et al (2005) Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F] galacto-RGD. PLoS Med 2(3):e70

    Article  Google Scholar 

  14. Varner JA, Cheresh DA (1996) Integrins and cancer. Curr Opin Cell Biol 8(5):724–730

    Article  CAS  Google Scholar 

  15. Takagi J (2004) Structural basis for ligand recognition by RGD (Arg-Gly-Asp)-dependent integrins. Biochem Soc T 32(Pt3):403–406

    Article  CAS  Google Scholar 

  16. Locardi E, Mullen DG, Mattern RH, Goodman M (1999) Conformations and pharmacophores of cyclic RGD containing peptides which selectively bind integrin αVβ3. J Pept Sci 5(11):491–506

    Article  CAS  Google Scholar 

  17. Tucker GC (2006) Integrins: molecular targets in cancer therapy. Curr oncol rep 8(2):96–103

    Article  CAS  Google Scholar 

  18. Belvisi L, Bernardi A, Colombo M, Manzoni L, Potenza D, Scolastico C et al. (2006) Targeting integrins: insights into structure and activity of cyclic RGD pentapeptide mimics containing azabicycloalkane amino acids. Bioorg Med Chem 14(1):169–180

    Article  CAS  Google Scholar 

  19. Gohlke H, Klebe G (2002) Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew Chem Int Ed Engl 41(15):2644–2676

    Article  CAS  Google Scholar 

  20. Jorgensen WL (2009) Efficient drug lead discovery and optimization. Acc Chem Res 42(6):724–733

    Article  CAS  Google Scholar 

  21. Xiang M, Cao Y, Fan W, Chen L, Mo Y (2012) Computer-aided drug design: lead discovery and optimization. Comb Chem High Throughput Screen 15(4):328–337

    Article  CAS  Google Scholar 

  22. Schneidman-Duhovny D, Nussinov R, Wolfson HJ (2004) Predicting molecular interactions in silico: II. Protein-protein and protein-drug docking. Curr Med Chem 11(1):91–107

    Article  CAS  Google Scholar 

  23. Shaikh SA, Jain T, Sandhu G, Latha N, Jayaram B (2007) From drug target to leads–sketching a physicochemical pathway for lead molecule design in silico. Curr Pharm Des 13(34):3454–3470

    Article  CAS  Google Scholar 

  24. Zhou Z, Felts A, Friesner R, Levy R (2007) Comparative performance of several flexible docking programs and scoring functions: enrichment studies for a diverse set of pharmaceutically relevant targets. J Chem Inf Model 47(4):1599–1608

    Article  CAS  Google Scholar 

  25. Adane L, Bharatam PV (2008) Modelling and informatics in the analysis of P. falciparum DHFR enzyme inhibitors. Curr Med Chem 15(16):1552–1569

    Article  CAS  Google Scholar 

  26. Song CM, Lim SJ, Tong JC (2009) Recent advances in computer-aided drug design. Brief Bioinform 10(5):579–591

    Article  CAS  Google Scholar 

  27. Mohan V, Gibbs AC, Cummings MD, Jaeger EP, DesJarlais RL (2005) Docking: successes and challenges. Curr Pharm Des 11(3):323–333

    Article  CAS  Google Scholar 

  28. Alonso H, Bliznyuk AA, Gready JE (2006) Combining docking andmolecular dynamic simulations in drug design. Med Res Rev 26(5):531–568

    Article  CAS  Google Scholar 

  29. Takeuchi H, Okazaki K (1990) Molecular dynamics simulation of diffusion of simple gas molecules in a short chain polymer. J Chem Phys 92(9):5643–5652

    Article  CAS  Google Scholar 

  30. Kollman PA (1993) Free energy calculations: applications to chemical and biochemical phenomena. Chem Rev 93:2395–2417

    Article  CAS  Google Scholar 

  31. Swanson JM, Henchman RH, McCammon JA (2004) Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys J 86:67–74

    Article  CAS  Google Scholar 

  32. Aquist J, Marelius J (2001) The linear interaction energy method for predicting ligand binding free energies. Comb Chem High Throughput Screen 4:613–626

    Google Scholar 

  33. Tan JJ, Cong XJ, Hu LM, Wang CX, Jia L, Liang XJ (2010) Therapeutic strategies underpinning the development of novel techniques for the treatment of HIV infection. Drug Discov Today 15(5–6):186–197

    Article  CAS  Google Scholar 

  34. Reddy MR, Singh UC, Erion MD (2011) Use of a QM/MM-based FEP method to evaluate the anomalous hydration behavior of simple alkyl amines and amides: application to the design of FBPase inhibitors for the treatment of type-2 diabetes. J Am Chem Soc 133:8059–8061

    Article  CAS  Google Scholar 

  35. Reddy MR, Erion MD (2007) Relative binding affinities of fructose-1, 6-bisphosphatase inhibitors calculated using a quantum mechanics-based free energy perturbation method. J Am Chem Soc 129(30):9296–9297

    Article  CAS  Google Scholar 

  36. Menikarachchi LC, Gascón JA (2010) QM/MM approaches in medicinal chemistry research. Curr Top Med Chem 10:46–54

    Article  CAS  Google Scholar 

  37. Warshel A, Levitt M (1976) Theoretical studies of enzymatic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249

    Article  CAS  Google Scholar 

  38. Spiegela K, Magistrato A (2006) Modeling anticancer drug–DNA interactions via mixed QM/MM molecular dynamics simulations. Org Biomol Chem 4:2507–2517

    Article  Google Scholar 

  39. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed Engl 48:1198–1229

    Article  CAS  Google Scholar 

  40. Zhou T, Huang D, Caflisch A (2010) Quantum mechanical methods for drug design. Curr Top Med Chem 10:33–45

    Article  CAS  Google Scholar 

  41. Xenides D, Randolf BR, Rode BM (2005) Structure and ultrafast dynamics of liquid water: a quantum mechanics/molecular mechanics molecular dynamics simulations study. J Chem Phys 122(17):174506

    Article  Google Scholar 

  42. Alves CN, Marti S, Castillo R, Andres J, Moliner V, Tunon I et al. (2007) Calculation of binding energy using BLYP/MM for the HIV-1 integrase complexed with the S-1360 and two analogues. Bioorg Med Chem 15(11):3818–3824

    Article  CAS  Google Scholar 

  43. Alzate-Morales JH, Contreras R, Soriano A, Tunon I, Silla E (2007) A computational study of the protein-ligand interactions in CDK2 inhibitors: using quantum mechanics/molecular mechanics interaction energy as a predictor of the biological activity. Biophys J 92(2):430–439

    Article  CAS  Google Scholar 

  44. Brooks BR, Brooks CL III, Mackerell A Jr, Nilsson L, Petrella R, Roux B et al. (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    Article  CAS  Google Scholar 

  45. Martin FP-D, Dumas R, Field MJ (2000) A hybrid-potential free-energy study of the isomerization step of the acetohydroxy acid isomeroreductase reaction. J Am Chem Soc 122(32):7688–7697

    Article  Google Scholar 

  46. Gleeson MP, Hillier IH, Burton NA (2004) Theoretical analysis of peptidyl α-ketoheterocyclic inhibitors of human neutrophil elastase: insight into the mechanism of inhibition and the application of QM/MM calculations in structure-based drug design. Org Biomol Chem 2(16):2275–2280

    Article  CAS  Google Scholar 

  47. Cui Q, Li G, Ma J, Karplus M (2004) A normal mode analysis of structural plasticity in the biomolecular motor F1-ATPase. J Mol Biol 340(2):345–372

    Article  CAS  Google Scholar 

  48. Lin Y, Cao Z, Mo Y (2006) Molecular dynamics simulations on the Escherichia coli ammonia channel protein AmtB: mechanism of ammonia/ammonium transport. J Am Chem Soc 128(33):10876–10884

    Article  CAS  Google Scholar 

  49. Rowley CN, Woo TK (2007) Generation of initial trajectories for transition path sampling of chemical reactions with ab initio molecular dynamics. J Chem Phys 126:024110

    Article  Google Scholar 

  50. Cheng Y, Cheng X, Radic Z, McCammon JA (2007) Acetylcholinesterase: mechanisms of covalent inhibition of wild-type and H447I mutant determined by computational analyses. J Am Chem Soc 129(20):6562–6570

    Article  CAS  Google Scholar 

  51. Hu H, Lu Z, Parks JM, Burger SK, Yang W (2008) Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface. J Chem Phys 128(3):034105

    Article  Google Scholar 

  52. Rowley CN, Woo TK (2011) Counteranion effects on the zirconocene polymerization catalyst olefin complex from QM/MM molecular dynamics simulations. Organometallics 30:2071–2074

    Article  CAS  Google Scholar 

  53. Alex A, Finn P (1997) Fast and accurate predictions of relative binding energies. J Mol Struct THEOCHEM 398:551–554

    Article  Google Scholar 

  54. Ciancetta A, Genheden S, Ryde U (2011) A QM/MM study of the binding of RAPTA ligands to cathepsin B. J Comput Aided Mol Des 25(8):729–742

    Article  CAS  Google Scholar 

  55. Beierlein FR, Michel J, Essex JW (2011) A simple QM/MM approach for capturing polarization effects in protein − ligand binding free energy calculations. J Phys Chem B 115:4911–4926

    Article  CAS  Google Scholar 

  56. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217

    Article  CAS  Google Scholar 

  57. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of sidechain amide orientation. J Mol Biol 285:1735–1747

    Article  CAS  Google Scholar 

  58. McGann M, Almond H, Nicholls A, Grant J, Brown F (2003) Gaussian docking functions. Biopolymers 68(1):76–90

    Article  CAS  Google Scholar 

  59. McGaughey G, Sheridan R, Bayly C, Culberson J, Kreatsoulas C, Lindsley S et al. (2007) Comparison of topological, shape, and docking methods in virtual screening. J Chem Inf Model 47(4):1504–1519

    Article  CAS  Google Scholar 

  60. McGann M (2011) FRED pose prediction and virtual screening accuracy. J Chem Inf Model 51:578–596

    Article  CAS  Google Scholar 

  61. Bártová I, Koča J, Otyepka M (2008) Regulatory phosphorylation of cyclin-dependent kinase 2: insights from molecular dynamics simulations. J Mol Model 14(8):761–768

    Article  Google Scholar 

  62. Wells GA, Müller IB, Wrenger C, Louw AI (2009) The activity of Plasmodium falciparum arginase is mediated by a novel inter-monomer salt-bridge between Glu295-Arg404. FEBS J 276(13):3517–3530

    Article  CAS  Google Scholar 

  63. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107(13):3902–3909

    Article  CAS  Google Scholar 

  64. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  65. Brunger A, Brooks CL III, Karplus M (1985) Active site dynamics of ribonuclease. Proc Natl Acad Sci USA 82(24):8458–8462

    Article  CAS  Google Scholar 

  66. Brooks CL III, Karplus M (1983) Deformable stochastic boundaries in molecular dynamics. J Chem Phys 79:6312–6325

    Article  CAS  Google Scholar 

  67. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  68. Fernández-Recio J, Romero A, Sancho J (1999) Energetics of a hydrogen bond (charged and neutral) and of a cation-π interaction in apoflavodoxin1. J Mol Biol 290(1):319–330

    Article  Google Scholar 

  69. Wintjens R, Liévin J, Rooman M, Buisine E (2000) Contribution of cation-π interactions to the stability of protein-DNA complexes. J Mol Biol 302(2):395–410

    Article  CAS  Google Scholar 

  70. Zacharias N, Dougherty DA (2002) Cation-π interactions in ligand recognition and catalysis. Trends Pharmacol Sci 23(6):281–287

    Article  CAS  Google Scholar 

  71. Lummis SCR, Beene DL, Harrison NJ, Lester HA, Dougherty DA (2005) A cation-π binding interaction with a tyrosine in the binding site of the GABAC receptor. Chem Biol 12(9):993–997

    Article  CAS  Google Scholar 

  72. Xiu X, Puskar NL, Shanata JAP, Lester HA, Dougherty DA (2009) Nicotine binding to brain receptors requires a strong cation–π interaction. Nature 458(7237):534–537

    Article  CAS  Google Scholar 

  73. Tantry S, Ding FX, Dumont M, Becker JM, Naider F (2010) Binding of fluorinated phenylalanine α-factor analogues to ste2p: Evidence for a cation-π binding interaction between a peptide ligand and its cognate G protein-coupled receptor. Biochemistry 49(24):5007–5015

    Article  CAS  Google Scholar 

  74. Zhou Z, Madura JD (2004) Relative free energy of binding and binding mode calculations of HIV–1 RT inhibitors based on dock–MM–PB/GS. Proteins Struct Funct Bioinf 57(3):493–503

    Article  CAS  Google Scholar 

  75. Bonnet P, Bryce RA (2004) Molecular dynamics and free energy analysis of neuraminidase–ligand interactions. Protein Sci 13(4):946–957

    Article  CAS  Google Scholar 

  76. Humphrey W, Dalke A, Schulten K (1996) VMD - visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the OpenEye Scientific Software for the academic license.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingli Xiang or Lijuan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, M., Lin, Y., He, G. et al. Correlation between biological activity and binding energy in systems of integrin with cyclic RGD-containing binders: a QM/MM molecular dynamics study. J Mol Model 18, 4917–4927 (2012). https://doi.org/10.1007/s00894-012-1487-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1487-z

Keywords

Navigation