Skip to main content
Log in

The structural, electronic, and optical properties of ladder-type polyheterofluorenes: a theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The ladder-type polyheterofluorenes were investigated theoretically by using density functional theory (DFT) to reveal their optical and electronic properties for applications in organic optoelectronic devices. The incorporation of heteroatoms (B, Si, Ge, N, P, O, and S) into the ladder-type highly fused polyfluorene backbone can influence and modify the optoelectronic properties significantly. The functionalization on the heteroatoms allows for facile derivation and incorporation of substitutes to further tune the properties. Small geometry variations between the ground, anionic/cationic, the first excited singlet and triplet states were observed due to the very rigid ladder-type coplanar backbone. Ladder-type polycarbazole was predicted to have the highest HOMO and LUMO energy levels, polyphosphafluorene oxide have the lowest HOMO energy level, polyborafluorene have the lowest LUMO energy level and bandgap, and polysulfafluorene has the highest bandgap and triplet energy. The ladder-type carbazole and borafluorene show the highest hole and electron injection abilities respectively; while sulfafluorene has the highest electron transfer rate. Most ladder-type heterofluorenes show bipolar charge transport character suggested by the reorganization energy. All of them have significantly short effective conjugation length in comparison with linear conjugated polymers. Their absorption and emission spectra were also simulated and discussed. The diversified electronic and optical properties of the ladder-type polyheterofluorenes with the different incorporated heteroatom and the substituent on it indicate their broad potential applications in organoelectronics.

Figure The schematic molecular diagram of ladder-type polyheterofluorenes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Balaji G, Phua DI, Shim WL, Valiyaveettil S (2010) Org Lett 12:232–235

    Article  CAS  Google Scholar 

  2. Hartley CS, Elliott EL, Moore JS (2007) J Am Chem Soc 129:4512–4513

    Article  CAS  Google Scholar 

  3. Romaner L, Heimel G, Wiesenhofer H, Scandiucci de Freitas P, Scherf U, Bredas JL, Zojer E, List EJ (2004) Chem Mater 16:4667–4674

    Article  CAS  Google Scholar 

  4. Malave OR, Ruiz Delgado MC, Hernandez V, Lopez Navarrete JT, Vercelli B, Zotti G, Novoa JJ, Suzuki Y, Yamaguchi S, Henssler JT, Matzger AJ (2009) Chem-Eur J 15:12346–12361

    Article  Google Scholar 

  5. Huang H, Prabhakar C, Tang K, Chou P, Huang G, Yang J (2011) J Am Chem Soc 133:8028–8039

    Article  CAS  Google Scholar 

  6. Kelley TW, Boardman LD, Dunbar TD, Muyres DV, Pellerite MJ, Smith TP (2003) J Phys Chem B 107:5877–5881

    Article  CAS  Google Scholar 

  7. Yamaguchi S, Xu CH, Tamao K (2003) J Am Chem Soc 125:13662–13663

    Article  CAS  Google Scholar 

  8. Agou T, Kobayashi J, Kawashima T (2007) Chem-Eur J 13:8051–8060

    Article  CAS  Google Scholar 

  9. Niimi K, Shinamura S, Osaka I, Miyazaki E, Takimiya K (2011) J Am Chem Soc 133:8732–8739

    Article  CAS  Google Scholar 

  10. Heeger AJ (2010) Chem Soc Rev 39:2354–2371

    Article  CAS  Google Scholar 

  11. Jacob J, Sax S, Piok T, List EJ, Grimsdale AC, Mullen K (2004) J Am Chem Soc 126:6987–6995

    Article  CAS  Google Scholar 

  12. Usta H, Facchetti A, Marks TJ (2008) J Am Chem Soc 130:8580

    Article  CAS  Google Scholar 

  13. Zheng Q, Jung BJ, Sun J, Katz HE (2010) J Am Chem Soc 132:5394–5404

    Article  CAS  Google Scholar 

  14. Zheng QD, Gupta SK, He GS, Tan LS, Prasad PA (2008) Adv Funct Mater 18:2770–2779

    Article  CAS  Google Scholar 

  15. Laquai F, Mishra AK, Ribas MR, Petrozza A, Jacob J, Akcelrud L, Mullen K, Friend RH, Wegner G (2007) Adv Funct Mater 17:3231–3240

    Article  CAS  Google Scholar 

  16. Cheedarala RK, Kim GH, Cho S, Lee J, Kim J, Song HK, Kim JY, Yang C (2011) J Mater Chem 21:843–850

    Article  CAS  Google Scholar 

  17. Cheng Y, Wu J, Shih P, Chang C, Jwo P, Kao W, Hsu C (2011) Chem Mater 23:2361–2369

    Article  CAS  Google Scholar 

  18. Chan KL, McKiernan MJ, Towns CR, Holmes AB (2005) J Am Chem Soc 127:7662–7663

    Article  CAS  Google Scholar 

  19. Chen JW, Cao Y (2007) Macromol Rapid Comm 28:1714–1742

    Article  CAS  Google Scholar 

  20. Chen RF, Zhu R, Zheng C, Liu SJ, Fan QL, Huang W (2009) Sci China Ser B 52:212–218

    Article  CAS  Google Scholar 

  21. Chen RF, Zhu R, Fan QL, Huang W (2008) Org Lett 10:2913–2916

    Article  CAS  Google Scholar 

  22. Chen RF, Fan QL, Zheng C, Huang W (2006) Org Lett 8:203–205

    Article  CAS  Google Scholar 

  23. Bouchard J, Wakim S, Leclerc M (2004) J Org Chem 69:5705–5711

    Article  CAS  Google Scholar 

  24. Tsuchimoto T, Matsubayashi H, Kaneko M, Nagase Y, Miyamura T, Shirakawa E (2008) J Am Chem Soc 130:15823–15835

    Article  CAS  Google Scholar 

  25. Levesque I, Bertrand PO, Blouin N, Leclerc M, Zecchin S, Zotti G, Ratcliffe CI, Klug DD, Gao X, Gao FM, Tse JS (2007) Chem Mater 19:2128–2138

    Article  CAS  Google Scholar 

  26. Li LC, Xiang JF, Xu CH (2007) Org Lett 9:4877–4879

    Article  CAS  Google Scholar 

  27. Matsuda T, Kadowaki S, Goya T, Murakami M (2007) Org Lett 9:133–136

    Article  CAS  Google Scholar 

  28. Sirringhaus H, Friend RH, Wang C, Ouml J, Leuninger R, Uuml KM (1999) J Mater Chem 2095–2101

  29. Wang CH, Hu RR, Liang S, Chen JH, Yang Z, Pei J (2005) Tetrahedron Lett 46:8153–8157

    Article  CAS  Google Scholar 

  30. Gao P, Feng XL, Yang XY, Enkelmann V, Baumgarten M, Mullen K (2008) J Org Chem 73:9207–9213

    Article  CAS  Google Scholar 

  31. Marcus RA (1993) Rev Mod Phys 65:599–610

    Article  CAS  Google Scholar 

  32. Chen RF, Zheng C, Fan QL, Huang W (2007) J Comput Chem 28:2091–2101

    Article  CAS  Google Scholar 

  33. Yin J, Chen RF, Zhang SL, Ling Q, Huang W (2010) J Phys Chem A 114:3655–3667

    Article  CAS  Google Scholar 

  34. An Z, Yin J, Shi N, Jiang H, Chen R, Shi H, Huang W (2010) J Polym Sci Pol Chem 48:3868–3879

    Article  CAS  Google Scholar 

  35. Chen R, Pan J, Zhang Y, Fan Q, Huang W (2006) J Phys Chem B 110:23750–23755

    Article  CAS  Google Scholar 

  36. Tao YT, Wang Q, Shang Y, Yang CL, Ao L, Qin JG, Ma DG, Shuai ZG (2009) Chem Commun 77–79

  37. Boudreault PT, Eacute SB, Leclerc M (2010) Polym Chem 127–136

  38. Tao Y, Wang Q, Yang C, Zhong C, Zhang K, Qin J, Ma D (2010) Adv Funct Mater 20:304–311

    Article  CAS  Google Scholar 

  39. Klaerner G, Miller RD (1998) Macromolecules 31:2007–2009

    Article  CAS  Google Scholar 

  40. Scherf UJ (1999) Mater Chem 9:1853–1864

    Article  CAS  Google Scholar 

  41. Hertel D, Setayesh S, Nothofer HG, Scherf U, Müllen K, Bässler H (2001) Adv Mater 13:65–70

    Article  CAS  Google Scholar 

  42. Kawaguchi K, Nakano K, Nozaki K (2007) J Org Chem 72:5119–5128

    Article  CAS  Google Scholar 

  43. Wong K, Chi L, Huang S, Liao Y, Liu Y, Wang Y (2006) Org Lett 8:5029–5032

    Article  CAS  Google Scholar 

  44. Ebata H, Miyazaki E, Yamamoto T, Takimiya K (2007) Org Lett 9:4499–4502

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Basic Research Program of China (2009CB930601 and 2012CB933301), National Natural Science Foundation of China (20804020, 60976019 and 20974046), The Ministry of Education of China (No. IRT1148), National Natural Science Foundation of Jiangsu Province (BK2011751), Scientific Research Foundation of Nanjing University of Posts and Telecommunications (NY210017 and NY210046), and Program for Postgraduates Research Innovations in University of Jiangsu Province (CXZZ11_0412).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Run-Feng Chen or Wei Huang.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.21 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, C., Tao, Y., Cao, JZ. et al. The structural, electronic, and optical properties of ladder-type polyheterofluorenes: a theoretical study. J Mol Model 18, 4929–4939 (2012). https://doi.org/10.1007/s00894-012-1483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1483-3

Keywords

Navigation