Skip to main content
Log in

A comparative proteomic approach to analyse structure, function and evolution of rice chitinases: a step towards increasing plant fungal resistance

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Glycoside hydrolase family 19 chitinases (EC 3.2.1.14) widely distributed in plants, bacteria and viruses catalyse the hydrolysis of chitin and play a major role in plant defense mechanisms and development. Rice possesses several classes of chitinase, out of which a single structure of class I has been reported in PDB to date. In the present study an attempt was made to gain more insight into the structure, function and evolution of class I, II and IV chitinases of GH family 19 from rice. The three-dimensional structures of chitinases were modelled and validated based on available X-ray crystal structures. The structural study revealed that they are highly α-helical and bilobed in nature. These enzymes are single or multi domain and multi-functional in which chitin-binding domain (CBD) and catalytic domain (CatD) are present in class I and IV whereas class II lacks CBD. The CatD possesses a catalytic triad which is thought to be involved in catalytic process. Loop III, which is common in all three classes of chitinases, reflects that it may play a significant role in their function. Our study also confirms that the absence and presence of different loops in GH family 19 of rice may be responsible for various sized products. Molecular phylogeny revealed chitinases in monocotyledons and dicotyledons differed from each other forming two different clusters and may have evolved differentially. More structural study of this enzyme from different plants is required to enhance the knowledge of catalytic mechanism and substrate binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bradley D, Kjellbom P, Lamb C (1992) Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70:21–30

    Article  CAS  Google Scholar 

  2. Hammerschmidt R (1999) Phytoalexins: what have we learned after 60 years? Annu Rev Phytopathol 37:285–306

    Article  CAS  Google Scholar 

  3. Misra AK, Gupta VK (2009) Trichoderma: biology, biodiversity and biotechnology. J Eco-Friendly Agric 4:99–117

    Google Scholar 

  4. Hahlbrock K, Lamb CJ, Purwin C, Ebel J, Fautz E, Schafer E (1981) Rapid response of suspension-cultured parsley cells to the elicitor from Phytophthora megasperma var. sojae: induction of the enzymes of general phenyalpropanoid metabolism. Plant Physiol 67:768–773

    Article  CAS  Google Scholar 

  5. Cramer CL, Ryder TB, Bell JN, Lamb CJ (1985) Rapid switching of plant gene expression induced by fungal elicitor. Science 227:1240–1243

    Article  CAS  Google Scholar 

  6. Lin W, Anuratha CS, Datta K, Potrykus I, Muthukrishnan S, Datta SK (1995) Genetic engineering of rice for resistance to sheath blight. Nat Biotechnol 13:686–691

    Article  CAS  Google Scholar 

  7. Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40

    Article  CAS  Google Scholar 

  8. Regalado AP, Pinheiro C, Vidal S, Chaves I, Ricardo CP, Rodrigues-Pousada C (2000) The Lupinus albus class-III chitinase gene, IF3, is constitutively expressed in vegetative organs and developing seeds. Planta 210:543–550

    Article  CAS  Google Scholar 

  9. Hamel F, Bellemare G (1995) Characterization of a class I chitinase gene and of wound-inducible, root and flower-specific chitinase expression in Brassica napus. Biochim Biophys Acta 1263:212–220

    Article  Google Scholar 

  10. Krishnaveni S, Liang GH, Muthukrishnan S, Manickam A (1999) Purification and partial characterization of chitinases from sorghum seeds. Plant Sci 144:1–7

    Article  CAS  Google Scholar 

  11. Goormachtig S, Lievens S, Van de Velde W, Van Montagu M, Holsters M (1998) Srchi13, a novel early nodulin from Sesbania rostrata, is related to acidic class III chitinases. Plant Cell 10:905–915

    CAS  Google Scholar 

  12. Cullimore JV, Ranjeva R, Bono JJ (2001) Perception of lipochitooligosaccharidic Nod factors in legume. Trends Plant Sci 6:24–30

    Article  CAS  Google Scholar 

  13. van der Holst PP, Schlaman HR, Spaink HP (2001) Proteins involved in the production and perception of oligosaccharides in relation to plant and animal development. Curr Opin Struct Biol 11:608–616

    Article  Google Scholar 

  14. van Hengel AJ, Guzzo F, van Kammen A, de Vries SC (1998) Expression pattern of the carrot EP3 endochitinase genes in suspension cultures and in developing seeds. Plant Physiol 117:43–53

    Article  Google Scholar 

  15. Passarinho PA, Van Hengel AJ, Fransz PF, de Vries SC (2001) Expression pattern of the Arabidopsis thaliana AtEP3/AtchitIV endochitinase gene. Planta 212:556–567

    Article  CAS  Google Scholar 

  16. Cohen-Kupiec R, Chet I (1998) The molecular biology of chitin digestion. Curr Opin Biotechnol 9:270–277

    Article  CAS  Google Scholar 

  17. Hanfrey C, Fife M, Buchanan-Wollaston V (1996) Leaf senescence in Brassica naupus: expression of genes encoding pathogenesis-related proteins. Plant Mol Biol 30:595–609

    Article  Google Scholar 

  18. Bishop JG, Dean AM, Mitchell-Olds T (2000) Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution. Proc Natl Acad Sci U S A 97:5322–5327

    Article  CAS  Google Scholar 

  19. Kasprzewska A (2003) Plant chitinases-regulation and function. Cell Mol Biol Lett 8:809–824

    CAS  Google Scholar 

  20. Neuhaus JM, Fritig B, Linthorst HJM, Meins F Jr, Mikkelsen JD, Ryals J (1996) A revised nomenclature for chitinase genes. Plant Mol Biol Rep 14:102–104

    Article  CAS  Google Scholar 

  21. Arie M, Hikichi K, Takahashi K, Esaka M (2000) Characterisation of basic chitinase which is secreted by cultured pumpkin cells. Physiol Plant 110:232–239

    Article  CAS  Google Scholar 

  22. Melchers LS, Apotheker-de Groot M, van der Knaap JA, Ponstein AS, Sela-Buurlage MB, Bol JF, Cornelissen BJ, van den Elzen PJ, Linthorst HJ (1994) A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Plant J 5:469–480

    Article  CAS  Google Scholar 

  23. Jekel PA, Hartmann BH, Beintema JJ (1991) The primary structure of hevamine, an enzyme with lysozyme/chitinase activity from Hevea brasiliensis latex. Eur J Biochem 200:123–130

    Article  CAS  Google Scholar 

  24. Lerner DR, Raikhel NV (1992) The gene for stinging nettle lectin (urtica dioica agglutinin) encodes both a lectin and a chitinase. J Biol Chem 267:11085–11091

    CAS  Google Scholar 

  25. Zhao KJ, Chye ML (1999) Methyl jasmonate induces expression of a novel Brassica juncea chitinase with two chitin-binding domains. Plant Mol Biol 40:1009–1018

    Article  CAS  Google Scholar 

  26. Berglund L, Brunstedt J, Nielsen KK, Chen Z, Mikkelsen JD, Marcker KA (1995) A proline-rich chitinase from Beta vulgaris. Plant Mol Biol 27:211–216

    Article  CAS  Google Scholar 

  27. Truong NH, Park SM, Nishizawa Y, Watanabe T, Sasaki T, Itoh Y (2003) Structure, heterologous expression, and properties of rice (Oryza sativa L.) family, 19 chitinases. Biosci Biotech Biochem 67:1063–1070

    Article  CAS  Google Scholar 

  28. Kezuka Y, Kojima M, Mizuno R, Suzuki K, Watanabe T, Nonaka T (2010) Structure of full-length class I chitinase from rice revealed by X-ray crystallography and small-angle X-ray scattering. Proteins 78:2295–2305

    Article  CAS  Google Scholar 

  29. Ouyang SW, Zhao KJ, Feng LX (2001) The structure and function, classification and evolution of plant chitinases. CBB 18:418–426

    Google Scholar 

  30. Aronson NN Jr, Halloran BA, Alexyev MF, Amable L, Madura JD, Pasupulati L, Worth C, Van Roey P (2003) Family 18 chitinase-oligosaccharide substrate interaction: subsite preference and anomer selectivity of Serratia marcescens chitinase A. Biochem J 376:87–95

    Article  CAS  Google Scholar 

  31. Ohno T, Armand S, Hata T, Nikaidou N, Henrissat B, Mitsutomi M, Watanabe T (1996) A modular family chitinase found in the prokaryotic organism Streptomyces griseus HUT6037. J Bacteriol 178:5065–5070

    CAS  Google Scholar 

  32. Xu F, Fan C, He Y (2007) Chitinases in Oryza sativa ssp. japonica and Arabidopsis thaliana. J Genet Genomics 34:138–150

    Article  CAS  Google Scholar 

  33. Nishizawa Y, Nishio Z, Nakazono K, Soma M, Nakajima E, Ugaki M, Hibi T (1999) Enhanced resistance to blast (Magnaporthe grisea) in transgenic Japonica rice by constitutive expression of rice chitianse. Theor Appl Genet 99:383–390

    Article  CAS  Google Scholar 

  34. Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK (2001) Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160:405–414

    Article  CAS  Google Scholar 

  35. Park SM, Kim DH, Truong NH, Itoh Y (2002) Heterologous expression and characterization of class III chitinases from rice (Oryza sativa L.). Enzyme Microb Technol 30:697–702

    Article  CAS  Google Scholar 

  36. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  37. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  38. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  39. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy Server. In: John M. Walker (ed) The proteomics protocols handbook. Humana Press pp 571–607

  40. Buchan DW, Ward SM, Lobley AE, Nugent TC, Bryson K, Jones DT (2010) Protein annotation and modelling servers at University College London. Nucleic Acids Res 38:W563–W568

    Article  CAS  Google Scholar 

  41. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    CAS  Google Scholar 

  42. Garnier J, Gibrat JF, Robson B (1996) GOR secondary structure prediction method version IV. Methods Enzymol 266:540–553

    Article  CAS  Google Scholar 

  43. Ishida T, Kinoshita K (2008) Prediction of disordered regions in proteins based on the meta approach. Bioinformatics 24:1344–1348

    Article  CAS  Google Scholar 

  44. Kong L, Ranganathan S (2004) Delineation of modular proteins: domain boundary prediction from sequence information. Brief Bioinform 5:179–192

    Article  CAS  Google Scholar 

  45. Vlahovicek K, Kaján L, Agoston V, Pongor S (2005) The SBASE domain sequence resource, release 12: prediction of protein domain-architecture using support vector machines. Nucleic Acids Res 33:D223–D225

    Article  CAS  Google Scholar 

  46. Wootton JC (1994) Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput Chem 18:269–285

    Article  CAS  Google Scholar 

  47. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  48. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23:318–326

    Article  CAS  Google Scholar 

  49. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK-a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  50. Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272

    Article  CAS  Google Scholar 

  51. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519

    Article  CAS  Google Scholar 

  52. Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170

    Article  CAS  Google Scholar 

  53. Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85

    Article  CAS  Google Scholar 

  54. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  Google Scholar 

  55. Gelly JC, Joseph AP, Srinivasan N, de Brevern AG (2011) iPBA: a tool for protein structure comparison using sequence alignment strategies. Nucleic Acids Res 39:W18–W23

    Article  CAS  Google Scholar 

  56. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:W116–W118

    Article  CAS  Google Scholar 

  57. Liang J, Edelsbrunner H, Woodward C (1995) Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 7:1884–1897

    Article  Google Scholar 

  58. Ikai AJ (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88:1895–1898

    CAS  Google Scholar 

  59. Guruprasad K, Reddy BV, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Prot Eng 4:155–164

    Article  CAS  Google Scholar 

  60. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  Google Scholar 

  61. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  CAS  Google Scholar 

  62. Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18:343–384

    Article  CAS  Google Scholar 

  63. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41:6573–6582

    Article  CAS  Google Scholar 

  64. Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12:54–60

    Article  CAS  Google Scholar 

  65. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59

    Article  CAS  Google Scholar 

  66. Argos P (1990) An investigation of oligopeptides linking domains in protein tertiary structure and possible candidates for general gene fusion. J Mol Biol 211:943–958

    Article  CAS  Google Scholar 

  67. Melo F, Feytmans E (1998) Assessing protein structures with a non-local atomic interaction energy. J Mol Biol 277:1141–1152

    Article  CAS  Google Scholar 

  68. Bodade RG, Beedkar SD, Manwar AV, Khobragade CN (2010) Homology modeling and docking study of xanthine oxidase of Arthrobacter sp. XL26. Int J Biol Macromol 2:298–303

    Article  Google Scholar 

  69. Ginalski K (2006) Comparative modeling for protein structure prediction. Curr Opin Struct Biol 16:172–177

    Article  CAS  Google Scholar 

  70. Rhodes G (2006) Crystallography made crystal clear, 3rd edn. Academic, Burlington, p 261

    Google Scholar 

  71. Heinig M, Frishman D (2004) STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res 32:W500–W502

    Article  CAS  Google Scholar 

  72. Ubhayasekera W, Tang CM, Ho SW, Berglund G, Bergfors T, Chye ML, Mowbray SL (2007) Crystal structures of a family 19 chitinase from Brassica juncea show flexibility of binding cleft loops. FEBS J 274:3695–3703

    Article  CAS  Google Scholar 

  73. Ubhayasekera W (2011) Structure and function of chitinases from glycoside hydrolase family 19. Polym Int 60:890–896

    Article  CAS  Google Scholar 

  74. Ubhayasekera W, Rawat R, Ho SW, Wiweger M, Von Arnold S, Chye ML, Mowbray SL (2009) The first crystal structures of a family 19 class IV chitinase: the enzyme from Norway spruce. Plant Mol Biol 71:277–289

    Article  CAS  Google Scholar 

  75. Mizuno R, Fukamizo T, Sugiyama S, Nishizawa Y, Kezuka Y, Nonaka T, Suzuki K, Watanabe T (2008) Role of the loop structure of the catalytic domain in rice class I chitinase. J Biochem 143:487–495

    Article  CAS  Google Scholar 

  76. Fukamizo T, Koga D, Goto S (1995) Comparative biochemistry of chitinases-anomeric form of the reaction products. Biosci Biotech Biochem 59:311–313

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge the financial support for Agri-Bioinformatics Promotion Program by Bioinformatics Initiative Division, Department of Information Technology, Ministry of Communications & Information Technology, Government of India, New Delhi as well as Biotechnology Information System Network, Department of Biotechnology, Government of India. Also the authors are grateful to Assam Agricultural University, Jorhat, Assam for providing the necessary facilities, constant support to carryout our research endeavour.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhumita Barooah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarma, K., Dehury, B., Sahu, J. et al. A comparative proteomic approach to analyse structure, function and evolution of rice chitinases: a step towards increasing plant fungal resistance. J Mol Model 18, 4761–4780 (2012). https://doi.org/10.1007/s00894-012-1470-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1470-8

Keywords

Navigation