Skip to main content
Log in

Theoretical study of electronic absorptions in aminopyridines – TCNE CT complexes by quantum chemical methods, including solvent

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The geometric and electronic structure of donor-acceptor complexes of TCNE with aniline, o-, m- and p- aminopyridines and pyridine has been studied in gas phase and in solution using CC2, TDDFT and CIS methods. Concerning interaction energy between particular donor and TCNE acceptor it is fairly described by both CC2 (MP2) and DFT-D approaches. Transition energies in gas phase calculated by CC2 approach are in good agreement with available experimental data for aniline. TDDFT calculations with LC-BLYP functional (with standard value of range separation factor μ = 0.47) gives transition energies too high although not as high as CIS. The red solvent shifts, calculated by PCM model with CIS method are qualitative correct, but error in the range of 0.1-0.2 eV should be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nino A, Munoz-Caro C (2001) Theoretical analysis of the molecular determinants responsible for the K + channel blocking by aminopyridines. Biophys Chem 91:49–60

    Article  CAS  Google Scholar 

  2. Borst DR, Roscioli JR, Pratt DW (2002) High-resolution electronic spectra of 2-hydroxy and 2-aminopyridine. Perturbing effects of the nitrogen atom in the aromatic ring. J Phys Chem A 106:4022–4027

    Article  CAS  Google Scholar 

  3. Kydd RA, Mill IM (1972) Microwave spectrum of 2-aminopyridine. J Mol Spectr 42:320–326

    Article  CAS  Google Scholar 

  4. Hager J, Wallace SC (1984) Supersonic beam studies of hydrogen-bonded indoles: relative interaction strengths. J Phys Chem 88:5513–5519

    Article  CAS  Google Scholar 

  5. Hager J, Wallace S (1985) Solvation effects in jet-cooled 2-aminopyridine clusters - excited-state dynamics and 2-color threshold photoionization spectroscopy. J Phys Chem 89:3833–3841

    Article  CAS  Google Scholar 

  6. Hager J, Leach GW, Demmer DR, Wallace S (1987) Structure and excited-state dynamics of 2-aminopyridine vanderwaals molecules and hydrogen-bonded complexes. J Phys Chem 91:3750–3758

    Article  CAS  Google Scholar 

  7. Müller A, Talbot F, Leutwyler S (2002) Hydrogen bond vibrations of 2-aminopyridine center dot 2-pyridone, a Watson-Crick analogue of adenine center dot uracil. J Am Chem Soc 124:14486–14494

    Article  Google Scholar 

  8. Roscioli JR, Pratt DW (2003) Base pair analogs in the gas phase. Proc Natl Acad Sci USA 100:13752–13754

    Article  CAS  Google Scholar 

  9. Sobolewski AL, Domcke W (2003) Ab-initio study of the excited-state coupled electron-proton-transfer process in the 2-aminopyridine dimer. Chem Phys 294:73–83

    Article  CAS  Google Scholar 

  10. Frey JA, Müller A, Frey HM, Leutwyler S (2004) Infrared depletion spectra of 2-aminopyridine center dot 2-pyridone, a Watson-Crick mimic of adenine center dot uracil. J Chem Phys 121:8237–8245

    Article  CAS  Google Scholar 

  11. Wu R, Brutschy B (2004) Infrared depletion spectroscopy and structure of the 2-aminopyridine dimer. J Phys Chem A 108:9715–9720

    Article  CAS  Google Scholar 

  12. Schultz T, Samoylova E, Radloff W, Hertel IV et al. (2004) Efficient deactivation of a model base pair via excited-state hydrogen transfer. Science 306:1765–1768

    Article  CAS  Google Scholar 

  13. Samoylova E, Smith VR, Ritze HH, Radloff W et al. (2006) Ultrafast deactivation processes in aminopyridine clusters: excitation energy dependence and isotope effects. J Am Chem Soc 128:15652–15656

    Article  CAS  Google Scholar 

  14. Lokey RS, Iverson BL (1995) Synthetic molecules that fold into a pleated secondary structure in solution. Nature 375:303–305

    Article  CAS  Google Scholar 

  15. Degaszafran Z, Kania A, Nowakwydra B et al. (1994) UV, H-1 AND C-13 NMR-Spectra, and AM1 studies of protonation of aminopyridines. J Mol Struct 322:223–232

    Article  CAS  Google Scholar 

  16. Mulliken RS, Person WB (1969) Molecular complexes. Wiley, New York

    Google Scholar 

  17. Miller JS (2006) Tetracyanoethylene (TCNE): the characteristic geometries and vibrational absorptions of its numerous structures. Angew Chem Int Ed Engl 45:2508–2525

    Article  CAS  Google Scholar 

  18. Liao MS, Lu Y, Parker VD, Scheiner S (2003) DFT calculations and spectral measurements of charge-transfer complexes formed by aromatic amines and nitrogen heterocycles with tetracyanoethylene and chloranil. J Phys Chem A 107:8939–8948

    Article  CAS  Google Scholar 

  19. Frey JE, Cole RD, Kitchen EC, Suprenant LM et al. (1985) Charge-transfer complexes of aryl derivatives of group-14 and group-15 elements with tetracyanoethylene. J Am Chem Soc 107:748–755

    Article  CAS  Google Scholar 

  20. Manna T, Bhattacharya S (2009) TCNE-aniline charge transfer complex: ab initio and TDDFT investigations in gas phase. J Mol Model 15:885–895

    Article  CAS  Google Scholar 

  21. Mostafa A, Bazzi HS (2009) Synthesis and spectroscopic studies of the charge transfer complexes of 2- and 3-aminopyridine. Spectrochim Acta A 74:180–187

    Article  Google Scholar 

  22. Bruni P, Tosi G, Cardellini L, Giorgini E, Stipa P (1989) The reaction of 1,1,2,2-ethenetetracarbonitrile (TCNE) with aminopyridines: salts and charge-transfer complex formation. Spectrochim Acta A 45:519–523

    Article  Google Scholar 

  23. Middleton WJ, Little EL, Coffman DD, Engelhardt VA (1958) Cyanocarbon chemistry V. Cyanocarbon acids and their salts. J Am Chem Soc 80:2795–2806

    Article  CAS  Google Scholar 

  24. Kyseľ O, Juhász G, Mach P (2003) Theoretical study of solvent effect on π-EDA complexation I. SCF and DFT calculations within polarized continuum model on TCNE-benzene complex. Collect Czech Chem Commun 68:2355–2376

    Article  Google Scholar 

  25. Kyseľ O, Juhász G, Mach P, Kosik G (2007) Theoretical study of solvent effect on π-EDA complexation II. Complex between TCNE and two benzene molecules. Chem Pap 61:66–72

    Article  Google Scholar 

  26. Kyseľ O, Budzak S, Mach P, Medved M (2010) MP2 and DFT study of IR spectra of TCNE-methyl substituted benzene complexes: is charge transfer important? Int J Quantum Chem 110:1712–1728

    Google Scholar 

  27. Kyseľ O, Budzak S, Mach P, Medved M (2008) MP2, DFT-D, and PCM study of the HMB-TCNE complex: thermodynamics, electric properties, and solvent effects. Int J Quantum Chem 108:1533–1545

    Article  Google Scholar 

  28. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  29. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115(8):3540–3544

    Article  CAS  Google Scholar 

  30. Budzak et al. (2011) Benchmark study of charge transfer excitation in methyl substituted benzene and tetracyanoethylene complexes, Ninth WATOC congress, Santiago de Compostella , July 2011, PII-018; submitted to PCCP

  31. Blaudeau JP, McGrath MP, Curtiss LA, Radom L et al. (1997) J Chem Phys 107:5016–5021

    Article  CAS  Google Scholar 

  32. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  33. Boys SF, Bernardi F (1970) Calculationof small molecular interactions by differences of separate total energies – some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  34. Foresman JB, Head-Gordon M, Pople JA, Frisch MJ (1992) J Phys Chem 96:135–149

    Article  CAS  Google Scholar 

  35. Christiansen O, Koch H, Jørgensen P (1995) The 2nd-order approximate coupled-cluster singles and doubles model CC2. Chem Phys Lett 243:409–418

    Article  CAS  Google Scholar 

  36. Hättig C, Wiegend F (2000) CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. J Chem Phys 113:5154–5161

    Article  Google Scholar 

  37. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  38. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  39. Weigend F, Köhn A, Hättig C (2002) Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J Chem Phys 116:3175–3183

    Article  CAS  Google Scholar 

  40. Dreuw A, Weisman JL, Head-Gordon M (2003) Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J Chem Phys 119:2943–2946

    Article  CAS  Google Scholar 

  41. Bernasconi L, Sprik M, Hutter J (2003) Time dependent density functional theory study of charge-transfer and intramolecular electronic excitations in acetone-water systems. J Chem Phys 119:12417–12431

    Article  CAS  Google Scholar 

  42. Tozer DJ, Handy NC (1998) Improving virtual Kohn-Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities. J Chem Phys 109:10180–10189

    Article  CAS  Google Scholar 

  43. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  44. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120:8425–8433

    Article  CAS  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian Inc, Wallingford, CT

  46. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  47. Ahlichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system TURBOMOLE. Chem Phys Lett 162:165–169

    Article  Google Scholar 

  48. Kobayashi T, Nagakura S (1974) Photoelectron spectra of substituted benzenes. Bull Chem Soc Jpn 47:2563–2572

    Article  CAS  Google Scholar 

  49. Kobayashi T, Nagakura S (1974) Photoelectron spectra of aminopyridines and cyanopyridines. J Electron Spectrosc Relat Phenom 4:207–212

    Article  CAS  Google Scholar 

  50. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104–154119

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences (VEGA) grant no. 1/0524/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Mach.

Additional information

To Professor Jan Urban from Comenius University in Bratislava on the occasion of his 60th birthday appreciating his contribution to theoretical modeling of chemical, physical and biological phenomena and long term friendship and common collaboration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mach, P., Juhász, G. & Kyseľ, O. Theoretical study of electronic absorptions in aminopyridines – TCNE CT complexes by quantum chemical methods, including solvent. J Mol Model 19, 4639–4650 (2013). https://doi.org/10.1007/s00894-012-1437-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1437-9

Keywords

Navigation