Skip to main content
Log in

Lead compound design for TPR/COX dual inhibition

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The modes of action of TxA2 antagonists and COX-2 inhibitors were studied utilizing flexible ligand docking with postdocking minimization and ab initio interaction energy calculations. The resulting increased understanding of their binding interactions led to the design of a lead compound with chemical moieties that allowed efficient binding to both the thromboxane receptor and the COX-2 enzyme. This compound is derived from allicin, a natural component of garlic, and is a good starting point for the development of anti-inflammatory drugs with fewer side effects or improved cardiovascular drugs.

Lead compound design for TPR/COX dual inhibition

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang LH, Kulmacz RJ (2002) Prostaglandins Other Lipid Mediat 409:68–69

    Google Scholar 

  2. Fu JY, Masferrer JL, Seibert K, Raz A, Needleman P (1990) J Biol Chem 265:16737–16740

    CAS  Google Scholar 

  3. Whittle BJ (2003) Fundam Clin Pharmacol 17:301–313

    Article  CAS  Google Scholar 

  4. Grosser T et al (2006) J Clin Invest 116:4–15

    Article  CAS  Google Scholar 

  5. Selg E, Buccellati C, Andersson M, Rovati GE, Ezinga M, Sala A, Larsson AK, Ambrosio E, Lastbom L, Capra V, Dahlen B, Ryrfeldt A, Folco GC, Dahlen SE (2007) Br J Pharmacol 152:1185–1195

    Article  CAS  Google Scholar 

  6. Rovati GE, Sala A, Capra V, Dahlen SE, Folco G (2010) Trends Pharmacol Sci 31(3):102–107

    Article  CAS  Google Scholar 

  7. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comput Chem 17:49–56

    Article  CAS  Google Scholar 

  8. Peng C, Schlegel HB (1994) Israel J Chem 33:449–457

    Google Scholar 

  9. Petersson GA, Al-Laham MA (1991) J Chem Phys 94:6081–6090

    Article  CAS  Google Scholar 

  10. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) J Chem Phys 89:2193–2218

    Article  CAS  Google Scholar 

  11. Liu ECK, Abell LM (2006) Anal Biochem 357:216–224

    Article  CAS  Google Scholar 

  12. Gierse JK, Hauser SD, Creely DP, Koboldt C, Rangwala SH, Isakson PC, Seibert K (1995) Biochem J 305:479–484

    CAS  Google Scholar 

  13. Kurumbail RG, Stevens AM, Gierse JK, Mc Donald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, Isakson PC, Stallings WC (1996) Nature 384:644–648

    Article  CAS  Google Scholar 

  14. Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, Isakson PC, Stallings WC (1997) Nature 385:555 (erratum)

    Google Scholar 

  15. Hirata M, Hayashi Y, Ushikubi F, Yokota Y, Kageyama R, Nakanishi S, Narumiya S (1991) Nature 349:617–620

    Article  CAS  Google Scholar 

  16. Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) Nucleic Acids Res 37:D387–D392

    Article  CAS  Google Scholar 

  17. Kopp J, Schwede T (2004) Nucleic Acids Res 32:D230–D234

    Article  CAS  Google Scholar 

  18. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shaw DE, Shelley M, Perry JK, Francis P, Shenkin PS (2004) J Med Chem 47:1739–1749

    Article  CAS  Google Scholar 

  19. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Polland WJ, Banks JL (2004) J Med Chem 47:1750–1759

    Article  CAS  Google Scholar 

  20. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) J Med Chem 49:6177–6196

    Article  CAS  Google Scholar 

  21. Schrödinger LLC (2009) Maestro. Schrödinger LLC, New York

  22. So SP, Wu J, Huang G, Huang A, Li D, Ruan KH (2003) J Biol Chem 278(13):10922–10927

    Article  CAS  Google Scholar 

  23. Yamamoto Y, Kamiya K, Terao S (1993) J Med Chem 36:820–825

    Article  CAS  Google Scholar 

  24. Nakahata N (2008) Pharmacol Ther 118:18–35

    Article  CAS  Google Scholar 

  25. Funk CD, Furci L, Moran N, Fitzgerald GA (1993) Mol Pharmacol 44:934–939

    CAS  Google Scholar 

  26. Selg E, Buccellati C, Andersson M, Rovati GE, Ezinga M, Sala A, Larsson AK, Ambrosio E, Lastbom L, Capra V, Dahlen B, Ryrfeldt A, Folco GC, Dahlen SE (2007) Brit J Pharmacol 152:1185–1195

    Article  CAS  Google Scholar 

  27. Rowlinson SW, Crews BC, Lanzo CA, Marnett LJ (1999) J Biol Chem 274(33):23305–23310

    Article  CAS  Google Scholar 

  28. Rowlinson SW, Kiefer JR, Prusakiewicz JJ, Pawlitz JL, Kozak KR, Kalgutkar AS, Stallings WC, Kurumbail RG, Marnett LJ (2003) J Biol Chem 278(46):45763–45769

    Article  CAS  Google Scholar 

  29. Bouaziz-Terrachet S, Toumi-Maouche A, Maouche B, Tairi-Kellou S (2010) J Mol Model 16:1919–1929

    Article  CAS  Google Scholar 

  30. Mais DE, Mohamadi F, Dube GP, Kurtz WL, Brune KA, Utterback BG, Spees MM, Jakubowski JA (1991) Eur J Med Chem 26:821–827

    Article  CAS  Google Scholar 

  31. Gupta AK, Gupta RA, Soni LK, Kaskhedikar SG (2008) Eur J Med Chem 43:1297–1303

    Article  CAS  Google Scholar 

  32. El-Sabban F (2009) J Chinese Clin Med 41(5):288–294

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhay Krishna or Arpita Yadav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishna, A., Yadav, A. Lead compound design for TPR/COX dual inhibition. J Mol Model 18, 4397–4408 (2012). https://doi.org/10.1007/s00894-012-1435-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1435-y

Keywords

Navigation