Skip to main content
Log in

Modeling the binding modes of stilbene analogs to cyclooxygenase-2: a molecular docking study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Stilbene analogs are a new class of anti-inflammatory compounds that effectively inhibit COX-2, which is the major target in the treatment of inflammation and pain. In this study, docking simulations were conducted using AutoDock 4 software that focused on the binding of this class of compounds to COX-2 protein. Our aim was to better understand the structural and chemical features responsible for the recognition mechanism of these compounds, and to explore their binding modes of interaction at the active site by comparing them with COX-2 co-crystallized with SC-558. The docking results allowed us to provide a plausible explanation for the different binding affinities observed experimentally. These results show that important conserved residues, in particular Arg513, Phe518, Trp387, Leu352, Leu531 and Arg120, could be essential for the binding of the ligands to COX-2 protein. The quality of the docking model was estimated based on the binding energies of the studied compounds. A good correlation was obtained between experimental logAr values and the predicted binding energies of the studied compounds.

The interaction of thirty stilbene analogs to COX-2 protein was studied using the automated docking simulation. The results of this study showed that the analogs can adopt two different binding modes in the active site of the COX-2 protein and that their predicted binding energies are in agreement with their experimental logAr values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4a–b
Fig. 5a–f
Fig. 6a–b
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Smith WL, DeWitt DL, Garavito RM (2000) Annu Rev Biochem 69:145–182

    Article  CAS  Google Scholar 

  2. Smith WL, DeWitt DL (1996) Adv Immunol 62:167–215

    Article  CAS  Google Scholar 

  3. Marnett LJ, Rowlinson SW, Goodwin DC, Kalgutkar AS, Lanzo CA (1999) J Biol Chem 274(33):22903–22906

    Article  CAS  Google Scholar 

  4. Picot D, Loll PJ, Garavito RM (1994) Nature 367:243–249

    Article  CAS  Google Scholar 

  5. Luong C, Miller A, Barnett J, Chow J, Ramesha C, Browner MF (1996) Nat Struct Biol 3:927–933

    Article  CAS  Google Scholar 

  6. Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, Isakson PC, Stallings WC (1996) Nature 384:644–648

    Article  CAS  Google Scholar 

  7. Zhang V, O’Sullivan M, Hussain H, Roswit WT, Holtzman MJ (1996) Biochem Biophys Res Commun 227:499–506

    Article  CAS  Google Scholar 

  8. Sirois J, Richards JS (1993) J Biol Chem 268:21931–21938

    CAS  Google Scholar 

  9. Yamagata K, Andreasson KI, Kaufmann WE, Barnes CA, Worley PF (1993) Neuron 11:371–386

    Article  CAS  Google Scholar 

  10. Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L, Isakson P (1994) Proc Natl Acad Sci USA 91:12013–12017

    Article  CAS  Google Scholar 

  11. Turini ME, DuBois RN (2002) Ann Rev Med 53:35–57

    Article  CAS  Google Scholar 

  12. Singh R, Kumar R, Singh DP (2009) J Med Food 12(1):208–218

    Article  CAS  Google Scholar 

  13. Prasit P, Wang Z, Brideau C, Chan CC, Charleson S, Cromlish W, Ethier D, Evans JF, Ford–Hutchinson AW, Gauthier JY, Gordon R, Guay J, Gresser M, Kargman S, Kennedy B, Leblanc Y, Léger S, Mancini J, O’Neill GP, Ouellet M, Percival MD, Perrier H, Riendeau D, Rodger I, Tagari P, Thérien M, Vickers P, Wong E, Xu LJ, Young RN, Zambouni R (1999) Bioorg Med Chem Lett 9:1773–1778

    Article  CAS  Google Scholar 

  14. Li S, Zheng Y (2006) Int J Mol Sci 7:220–229

    Article  CAS  Google Scholar 

  15. Biava M, Porretta GC, Cappelli A, Vomero S, Manetti F, Botta M, Sautebin L, Rossi A, Makovec F, Anzini M (2005) J Med Chem 48:3428–3432

    Article  CAS  Google Scholar 

  16. Bosch J, Roca T, Catena JL, Llorens O, Pérez JJ, Lagunas C, Fernàndez AG, Miquel I, Fernàndez-Serrat A, Farrerons C (2000) Bioorg Med Chem Lett 10:1745–1748

    Article  CAS  Google Scholar 

  17. FitzGerald GA (2004) N Engl J Med 351:1709–1911

    Article  CAS  Google Scholar 

  18. Solomon DH, Schneeweiss S, Glynn RJ, Kiyota Y, Levin R, Mogun H, Avorn J (2004) Circulation 109:2068–2073

    Article  CAS  Google Scholar 

  19. Finckh A, Aronson MD (2005) Ann Intern Med 142:212–214

    Google Scholar 

  20. Dogné JM, Supuran CT, Pratico D (2005) J Med Chem 48:2251–2257

    Article  CAS  Google Scholar 

  21. Chavatte P, Yous S, Marot C, Baurin N, Lesieur D (2001) J Med Chem 44:3223–3230

    Article  CAS  Google Scholar 

  22. Desiraju GR, Gopalkrishnan B, Jetti RK, Nagaraju A, Raveendra D, Sarma JA, Sobhia ME, Thilagavathi R (2002) J Med Chem 45:4847–4857

    Article  CAS  Google Scholar 

  23. Liu H, Huang X, Shen J, Luo X, Li M, Xiong B, Chen G, Shen J, Yang Y, Jiang H, Chen K (2002) J Med Chem 45:4816–4827

    Article  CAS  Google Scholar 

  24. Soliva R, Almansa C, Kalko SG, Luque FJ, Orozco M (2003) J Med Chem 46:1372–1382

    Article  CAS  Google Scholar 

  25. Garg R, Kurup A, Mekapati SB, Hansch C (2003) Chem Rev 103:703–732

    Article  CAS  Google Scholar 

  26. Murias M, Handler N, Erker T, Pleban K, Ecker G, Saiko P, Szekeres T, Jäger W (2004) Bioorg Med Chem 12:5571–5578

    Article  CAS  Google Scholar 

  27. Baurin N, Mozziconacci JC, Arnoult E, Chavatte P, Marot C, Morin-Allory L (2004) J Chem Inf Comput Sci 44:276–285

    CAS  Google Scholar 

  28. Chen YC, Chen KT (2007) Acta Pharmacol Sin 12:2027–2032

    Article  CAS  Google Scholar 

  29. Dilber SP, Dobric SLJ, Juranic ZD, Markovic BD, Vladimirov SM, Juranic IO (2008) Molecules 13:603–615

    Article  CAS  Google Scholar 

  30. Ermondi G, Caron G, Lawrence R, Longo D (2004) J Comput Aided Mol Des 18:683–696

    Article  CAS  Google Scholar 

  31. Uddin MJ, Praveen Rao PN, Knaus EE (2005) Bioorg Med Chem 13:417–424

    Article  CAS  Google Scholar 

  32. Uddin MJ, Rao PN, Knaus EE (2004) Bioorg Med Chem Lett 14:1953–1956

    Article  CAS  Google Scholar 

  33. Uddin MJ, Rao PN, Knaus EE (2004) Bioorg Med Chem 12:5929–5940

    Article  CAS  Google Scholar 

  34. Moreau A, Chen QH, Praveen Rao PN, Knaus EE (2006) Bioorg Med Chem 14:7716–7727

    Article  CAS  Google Scholar 

  35. MDL Information Systems (2002) ISIS/Draw 2.5. MDL Information Systems, San Leandro

  36. Cambridge Scientific Computing (2003) ChemOffice Ultra. Cambridge Scientific Computing, Cambridge

  37. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25(13):1605–1612

    Article  CAS  Google Scholar 

  38. Sanner MF (1999) J Mol Graphics Mod 17:57–61

    Google Scholar 

  39. Morris Garrett M, Goodsell David S, Halliday Robert S, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662

    Article  Google Scholar 

  40. Solis FJ, Wets RJB (1981) Math Operations Res 6:19–30

    Article  Google Scholar 

  41. Greig GM, Francis DA, Falgueyret JP, Ouellet M, Percival MD, Roy P, Bayly C, Mancini JA, O’Neill GP (1997) Mol Pharmacol 52:829–838

    CAS  Google Scholar 

  42. Rao PN, Uddin MJ, Knaus EE (2004) J Med Chem 47:3972–3990

    Article  CAS  Google Scholar 

  43. Zebardast T, Zarghi A, Daraie B, Hedayati M, Dadrass OG (2009) Bioorg Med Chem Lett 19:3162–3165

    Article  CAS  Google Scholar 

  44. Kozak KR, Prusakiewicz JJ, Rowlinson SW, Schneider C, Marnett LJ (2001) J Biol Chem 276:30072–30077

    Article  CAS  Google Scholar 

  45. Selinsky BS, Gupta K, Sharkey CT, Loll PJ (2001) Biochemistry 40:5172–5180

    Article  CAS  Google Scholar 

  46. Rowlinson SW, Kiefer JR, Prusakiewicz JJ, Pawlitz JL, Kozak KR, Kalgutkar AS, Stallings WC, Kurumbail RG, Marnett LJ (2003) J Biol Chem 278:45763–45769

    Article  CAS  Google Scholar 

  47. Kiefer JR, Pawlitz JL, Moreland KT, Stegeman RA, Hood WF, Gierse JK, Stevens AM, Goodwin DC, Rowlinson SW, Marnett LJ, Stallings WC, Kurumbail RG (2000) Nature 405:97–101

    Article  CAS  Google Scholar 

  48. Teague SJ (2003) Nat Rev Drug Discov 2:527–541

    Article  CAS  Google Scholar 

  49. Gunasekaran K, Nussinov R (2007) J Mol Biol 365:257–273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Souhila Bouaziz-Terrachet wishes to warmly thank Lehtihet Abdelhalim El Amine and Redouane Terrachet of the EMP (Ecole Militaire Polytechnique) of Algeria for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souhila Bouaziz-Terrachet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouaziz-Terrachet, S., Toumi-Maouche, A., Maouche, B. et al. Modeling the binding modes of stilbene analogs to cyclooxygenase-2: a molecular docking study. J Mol Model 16, 1919–1929 (2010). https://doi.org/10.1007/s00894-010-0679-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0679-7

Keywords

Navigation