Skip to main content
Log in

Computational chemistry calculations of stability for bismuth nanotubes, fullerene-like structures and hydrogen-containing nanostructures

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Using molecular mechanics (MM+), semi-empirical (PM6) and density functional theory (DFT) (B3LYP) methods we characterized bismuth nanotubes. In addition, we predicted the bismuth clusters {Bi20(C 5V ), Bi24(C 6v ), Bi28(C 1 ), B32(D 3H ), Bi60(C I )} and calculated their conductor properties.

One of possible hydrogen-containing bismuth fullerene-like nanostructures

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Norman NC (ed) (1997) Chemistry of arsenic, antimony and bismuth, 1st edn. Springer, Heidelberg, p 496

    Google Scholar 

  2. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, Hoboken, p 1376

    Google Scholar 

  3. Sergeev GB (2006) Nanochemistry, 1st edn. Elsevier, Amsterdam, p 262

    Google Scholar 

  4. Koch C, Ovid'ko I, Seal S, Veprek S (2007) Structural nanocrystalline materials: fundamentals and applications, 1st edn. Cambridge University Press, p 364

  5. Fryxell GE, Cao G (2007) Environmental applications of nanomaterials: synthesis, sorbents and sensors. Imperial College Press, p 520

  6. Asthana R, Kumar A, Dahotre NB (2005) Materials processing and manufacturing science, 1st edn. Butterworth-Heinemann, Oxford, p 656

  7. Sakka S (2004) Handbook of sol–gel science and technology: processing characterization and applications, 1 edn. Springer, Heidelberg, p 1980

  8. Soderberg BCG (2003) Transition metals in organic synthesis: highlights for the year 2000. Coord Chem Rev 241(1):147–247

    Article  CAS  Google Scholar 

  9. Cao G, Liu D (2008) Template-based synthesis of nanorod, nanowire, and nanotube arrays. Adv Colloid Interface Sci 136(1):45–64

    Article  CAS  Google Scholar 

  10. Dresselhaus MS, Lin YM, Rabin O, Jorio A, Souza Filho AG, Pimenta MA et al. (2003) Nanowires and nanotubes. Mater Sci Eng C 23(1):129–140

    Article  Google Scholar 

  11. Penner RM, Zach MP, Favier F (2007) Methods for fabricating metal nanowires. United States Patent 7220346. http://www.freepatentsonline.com/7220346.html

  12. Guo T (2006) Nanoparticle radiosensitizers. Patent WO2006037081

  13. Zhou G, Li L, Li GH (2010) Enhancement of thermoelectric figure of merit in bismuth nanotubes. Appl Phys Lett 97(2):023112/1–0233112/3

    Article  CAS  Google Scholar 

  14. Ma D, Zhao J, Li Y, Su X, Hou S, Zhao Y, Hao X-L, Li L (2010) Organic molecule directed synthesis of bismuth nanostructures with varied shapes in aqueous solution and their optical characterization. Colloids Surf A 368(1–3):105–111

    Article  CAS  Google Scholar 

  15. Derrouiche S, Zoican LC, Wang C, Pfefferle L (2010) Energy-induced morphology changes in bismuth nanotubes. J Phys Chem C 114(10):4336–4339

    Article  CAS  Google Scholar 

  16. Tao X, Qu J, Sun L, Zhao Y (2009) Rapid synthesis and characterization of bismuth nanotubes. Huahue Yanjiu 20(3):74–76

    CAS  Google Scholar 

  17. Yang D, Meng G, Xu Q, Han F, Kong M, Zhang L (2008) Electronic transport behavior of bismuth nanotubes with a predesigned wall thickness. J Phys Chem C 112(23):8614–8616

    Article  CAS  Google Scholar 

  18. Derouiche S, Loebrick CZ, Pfefferle L (2010) Optimization of routes for the synthesis of bismuth nanotubes: implications for nanostructure form and selectivity. J Phys Chem C 114(8):3431–3440

    Article  Google Scholar 

  19. Su C, Liu H-T, Li J-M (2002) Bismuth nanotubes: potential semiconducting materials. Nanotechnology 13(6):746–749

    Article  CAS  Google Scholar 

  20. Rasche B, Seifert G, Enyashin A (2010) Stability and electronic properties of bismuth nanotubes. J Phys Chem C 114:22092–22097

    Article  CAS  Google Scholar 

  21. Li SF, Gao L, Gong XG, Guo ZX (2008) No cage, no tube: relative stabilities of nanostructures. J Phys Chem C 112(34):13200–13203

    Article  CAS  Google Scholar 

  22. Qi J, Shi D, Jiang X (2008) The structures and electronic properties of double-wall bismuth nanotubes from first-principle calculations. Chem Phys Lett 460(1–3):266–271

    Article  CAS  Google Scholar 

  23. C-r Su, Li J-M (2002) First principles study on electronic property of bismuth nanotubes. Yuanzihe Wuli Pinglun 19(2):224–226

    Google Scholar 

  24. Boldt R, Kaiser M, Kohler D, Krumeich F, Ruck M (2010) High-yield synthesis and structure of double-walled bismuth nanotubes. Nano Lett 10:208–210

    Article  CAS  Google Scholar 

  25. Gao L, Li P, Lu H, Li SF, Guo ZX (2008) Size- and charge-dependent geometric and electronic structures of Bin (Bin-) clusters (n = 2–13) by first-principles. simulations. J Chem Phys 128(19):194304/1–194304/9

    Article  CAS  Google Scholar 

  26. Karttunen AJ, Linnolahti M, Pakkanen TA (2011) Structural and electronic trends among group 15 polyhedral fullerenes. Theor Chem Acc 129:413–422

    Article  CAS  Google Scholar 

  27. http://www.hyper.com/ Accessed on 9 Feb 2012

  28. http://www.gaussian.com/g_prod/g09.htm Accessed on 9 Feb 2012

  29. http://www.chemcraftprog.com/ Accessed on 9 Feb 2012

  30. http://www.ks.uiuc.edu/Research/vmd/ Accessed on 9 Feb 2012

  31. Mina Yoon SY, Wang E, Zhang Z (2007) Charged fullerenes as high-capacity hydrogen storage media. Nano Lett 7(9):2578–2583

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris I. Kharisov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharissova, O.V., Osorio, M., Vázquez, M.S. et al. Computational chemistry calculations of stability for bismuth nanotubes, fullerene-like structures and hydrogen-containing nanostructures. J Mol Model 18, 3981–3992 (2012). https://doi.org/10.1007/s00894-012-1401-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1401-8

Keywords

Navigation