Skip to main content
Log in

Theoretical studies on the Mo-catalyzed asymmetric intramolecular Pauson-Khand-type [2 + 2 + 1] cycloadditions of 3-allyloxy-1-propynylphosphonates

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) was used to investigate the Mo-catalyzed intramolecular Pauson-Khand reaction of 3-allyloxy-1-propynylphosphonates. All intermediates and transition states were optimized completely at the B3LYP/6-31 G(d,p) level [LANL2DZ(f) for Mo]. In the Mo-catalyzed intramolecular Pauson-Khand reaction, the C–C oxidative cyclization reaction was the chirality-determining step, and the reductive elimination reaction was the rate-determining step. The carbonyl insertion reaction into the Mo–C(sp 3) bond was easier than into the Mo–C = C bond. And the dominant product predicted theoretically was of (S)-chirality, which agreed with experimental data. This reaction was solvent dependent, and toluene was the best among the three solvents toluene, CH3CN, and THF.

Density functional theory (DFT) study suggests that the Mo-catalyzed intramolecular Pauson-Khand reaction is solvent dependent, and that toluene is a better solvent than CH3CN or THF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Khand IU, Knox GR, Pauson PL, Watts WE, Foreman MI (1973) J Chem Soc Perkin Trans 1:975–977

    Article  Google Scholar 

  2. Khand IU, Knox GR, Pauson PL, Watts WE, Foreman MI (1973) J Chem Soc Perkin Trans 1:977–981

    Article  Google Scholar 

  3. Pauson PL, Khand IU, Ann NY (1977) Acad Sci 295:2–14

    Article  CAS  Google Scholar 

  4. Pauson PL (1985) Tetrahedron 41:5855–5860

    Article  CAS  Google Scholar 

  5. Murakami M, Amii H, Ito Y (1994) Nature 370:540–541

    Article  CAS  Google Scholar 

  6. Blance-Urgoito J, Anorbe L, Pérez-Senano L, Domingcez G, Pérez-Castells J (2004) Chem Soc Rev 33:32–42

    Article  Google Scholar 

  7. Brummond KM, Kent JL (2000) Tetrahedron 56:3263–3283

    Article  CAS  Google Scholar 

  8. Chung YK (1999) Coord Chem Rev 188:297–341

    Article  Google Scholar 

  9. Strübing D, Beller M (2006) Top Organomet Chem 18:165–178

    Article  Google Scholar 

  10. Shibata T (2006) Adv Syn Catal 348:2328–2336

    Article  CAS  Google Scholar 

  11. Shibata T, Toshida N, Takagi K (2002) Org Lett 4:1619–1621

    Article  CAS  Google Scholar 

  12. Shibata T, Toshida N, Takagi K (2002) J Org Chem 68:7446–7450

    Article  Google Scholar 

  13. Morimoto T, Fuji K, Tsutsumi K, Kakiuchi K (2002) J Am Chem Soc 124:3806–3807

    Article  CAS  Google Scholar 

  14. Fuji K, Morimoto T, Tsutsumi K, Kakiuchi K (2003) Angew Chem Int Ed 42:2409–2411

    Article  CAS  Google Scholar 

  15. Morimoto T, Kakiuchi K (2004) Angew Chem Int Ed 43:5580–5588

    Article  CAS  Google Scholar 

  16. Kwong FY, Lee HW, Qiu L, Lam WH, Li YM, Kwong HL, Chan ASC (2005) Adv Syn Catal 347:1750–1754

    Article  CAS  Google Scholar 

  17. Kent JL, Wan H, Brummond KM (1995) Tetrahedron Lett 36:2407–2410

    Article  CAS  Google Scholar 

  18. Minami T, Okauchi T, Kouno R (2001) Synthesis 349–357

  19. Dembitsky VM, Al Quntar AAA, Haj-Yehia A, Srebnik M (2005) MiniRev Org Chem 2:91–109

    Article  CAS  Google Scholar 

  20. Maffei M (2004) Curr Org Synth 1:355–375

    Article  CAS  Google Scholar 

  21. Quntar AA, Baum O, Reich R, Srebnik M (2004) Arch Pharm 337:76–80

    Article  Google Scholar 

  22. Quntar AA, Gallily R, Katzavian G, Srebnik M (2007) Eur J Pharmacol 556:9–13

    Article  CAS  Google Scholar 

  23. Cristau HJ, Gasc MB, Mbianda XY, Geze A (1996) Phosphorus Sulfur Silicon Relat Elem 111:159–159

    Article  Google Scholar 

  24. Rivero MR, Carretero JC (2003) J Org Chem 68:2975–2978

    Article  Google Scholar 

  25. Moradov D, Quntar AAAA, Youssef M, Smoum R, Rubinstein A, Srebrnik M (2009) J Org Chem 74:1029–1033

    Article  CAS  Google Scholar 

  26. Imhof W, Anders E, Göbel A, Görls H (2003) Chem Eur J 9:1166–1181

    Article  CAS  Google Scholar 

  27. Fjermestad T, Pericàs MA, Maseras F (2011) Chem Eur J 17:10050–10057

    Article  CAS  Google Scholar 

  28. Wang C, Wu YD (2007) Organometallics 27:6152–6162

    Article  Google Scholar 

  29. Baik MH, Mazumder S, Ricci P, Sawyer JR, Song YG, Wang H, Evans PA (2008) J Am Chem Soc 133:7621–7623

    Article  Google Scholar 

  30. Baik MH, Mazumder S, Ricci P, Sawyer JR, Song YG, Wang H, Evans PA (2011) J Am Chem Soc 130:5821–5830

    Google Scholar 

  31. Gimbert Y, Lesage D, Milet A, Fournier F, Greene AE, Tabet JC (2003) Org Lett 5:4073–4075

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PW, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision B.05. Gaussian Inc, Pittsburgh PA

    Google Scholar 

  33. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  36. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  37. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–297

    Article  CAS  Google Scholar 

  38. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  39. Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114

    Article  CAS  Google Scholar 

  40. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  41. Flükiger P, Lüthi HP, Portmann S, Weber J (2000–2002) MOLEKEL 4.3 Swiss Center for Scientific Computing, Manno. Switzerland

  42. Portmann S, Lüthi HP (2000) Chimia 54:766–770

    CAS  Google Scholar 

  43. Carpenter JE, Weinhold F (1988) J Mol Struct THEOCHEM 169:41–50

    Article  Google Scholar 

  44. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  45. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  46. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  47. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI

  48. Marten B, Kim K, Cortis C, Friesner RA, Murphy RB, Ringnalda MN, Sitkoff D, Honig B (1996) J Phys Chem 100:11775–11788

    Article  CAS  Google Scholar 

  49. Friesner RA, Murphy RB, Beachy MD, Ringnalda MN, Pollard WT, Dunietz BD, Cao YX (1999) J Phys Chem A 103:1913–1928

    Article  CAS  Google Scholar 

  50. Miertus S, Tomasi J (1982) Chem Phys 65:239–245

    CAS  Google Scholar 

  51. Gorelsky SI, Lever ABP (2001) J Organomet Chem 635:187–196

    Article  CAS  Google Scholar 

  52. Gorelsky SI (1997) AOMix: program for molecular orbital analysis. York University, Toronto, Canada; http://www.sf-chem.net/

  53. Gorelsky SI, Ghosh S, Solomon EI (2006) J Am Chem Soc 128:278–290

    Article  CAS  Google Scholar 

  54. Bader RFW (1990) Atoms in molecules, a quantum theory; International series of monographs in chemistry, vol 22. Oxford University Press, Oxford, UK

    Google Scholar 

  55. Biegler-König F, Schönbohm J, Derdau R, Bayles D, Bader RFW (2002) AIM 2000. Version 2.0, McMaster University

Download references

Acknowledgments

This work was supported by the Key Project of Science and Technology of the Ministry of Education, P. R. (grant No. 104263), Natural Science Foundation of Chongqing City, P. R. (grant No. CSTC-2004BA4024).

Supporting information

All energies, Wiberg bond orders P ij and electron density ρ (e·Å−3) at BCPs of some selected bonds are given by the supporting information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM1 (DOC 71 kb)

ESM2 (DOC 64 kb)

ESM3 (DOC 51 kb)

ESM4 (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, Q., Li, M. Theoretical studies on the Mo-catalyzed asymmetric intramolecular Pauson-Khand-type [2 + 2 + 1] cycloadditions of 3-allyloxy-1-propynylphosphonates. J Mol Model 18, 3489–3499 (2012). https://doi.org/10.1007/s00894-012-1361-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1361-z

Keywords

Navigation