Skip to main content
Log in

Size and chain length effects on structural behaviors of biphenylcyclohexane-based liquid crystal nanoclusters by a coarse-grained model

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Size and chain length effects on structural behaviors of liquid crystal nanoclusters were examined by a coarse-grained model and the configurational-bias Monte Carlo (CBMC) simulation. The nanoclusters investigated in this study are composed of the biphenylcyclohexane-based BCH5H liquid crystal molecule and its derivatives. Results of the study show that the average energy decreases (i.e., more negative) as the cluster size (i.e., the number of molecules) increases. With the increasing cluster size, the equilibrium conformation of the nanocluster changes gradually from a pipe-like structure (for the smaller systems) to a ball-like cluster (for the larger systems). The order parameter of the system reduces with the transition of the equilibrium conformation. Regarding the chain length effect, the pipe-like equilibrium conformation (for the smaller systems) was observed more close to a pipe as the length of the tail alkyl chain of the derivatives extended. However, due to the flexibility of the tail alkyl chain, the pipe conformation of the system deflects slightly about its cyclohexyl group as the tail extends further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang B, Li K, Chigrinov VG, Kwok HS, Huang HC (2005) Application of photoalignment technology to liquid-crystal-on-silicon microdisplays. Jap J Appl Phys 44:3983–3991. doi:10.1143/JJAP.44.3983

    Article  CAS  Google Scholar 

  2. Mao YE, Wang B, Takahashi T, Sato S (2007) Properties of variable-focus liquid crystal lens and its application in focusing system. Opt Rev 14:173–175. doi:10.1007/s10043-007-0173-3

    Article  Google Scholar 

  3. Ren H, Fan YH, Wu ST (2004) Liquid-crystal microlens arrays using patterned polymer networks. Opt Lett 29:1608–1610. doi:10.1364/OL.29.001608

    Article  Google Scholar 

  4. Cheng CC, Chang CA, Yeh JA (2006) Variable focus dielectric liquid droplet lens. Opt Expr 14:4101–4106. doi:10.1364/OE.14.004101

    Article  Google Scholar 

  5. Woltman SJ, Jay GD, Crawford GP (2007) Liquid crystal materials find a new order in biomedical applications. Nat Mater 6:929–938. doi:10.1038/nmat2010

    Article  CAS  Google Scholar 

  6. Holstein P, Bender M, Galvosas P, Geschke D, Kärger J (2000) Anisotropic diffusion in a nematic liquid crystal— An electric field PFG NMR approach. J Mag Res 143:427–430. doi:10.1006/jmre.2000.2028

    Article  CAS  Google Scholar 

  7. Gwag JS, Kim JC, Yoon TH, Cho SJ (2006) Effect of polyimide layer surfaceson pretilt angles and polar anchoring energy of liquid crystals. J Appl Phys 100:093502. doi:10.1063/1.2372229

    Article  Google Scholar 

  8. Somma E, Chi C, Loppinet B, Grinshtein J, Graf R, Fytas G, Spiess HW, Wegner G (2006) Orientation dynamics in isotropic phases of model oligofluorenes: Glass or liquid crystal. J Chem Phys 124:204910. doi:10.1063/1.2191059

    Article  CAS  Google Scholar 

  9. Filpo GD, Cassano R, Tortora L, Nicoletta FP, Chidichimo G (2008) UV tuning of the electro-optical and morphology properties in polymer-dispersed liquid crystals. Liq Crys 35:45–48. doi:10.1080/02678290701769915

    Article  Google Scholar 

  10. McDonald AJ, Hanna S (2004) Atomistic computer simulations of terraced wetting of model 8CB molecules at crystal surfaces. Mol Crys Liq Crys 413:135–144. doi:10.1080/15421400490437222

    Article  Google Scholar 

  11. Capar MI, Cebe E (2006) Molecular dynamics study of the odd-even effect in some 4-n-alkyl-4’-cyanobiphenyls. Phys Rev E 73:061711. doi:10.1103/PhysRevE.73.061711

    Article  Google Scholar 

  12. Peláez J, Wilson MR (2006) Atomistic simulations of a thermotropic biaxial liquid crystal. Phys Rev Lett 97:267801. doi:10.1103/PhysRevLett.97.267801

    Article  Google Scholar 

  13. Mirantsev LV, Virga EG (2007) Molecular dynamics simulation of nanoscopic nematic twist cell. Phys Rev E 76:021703. doi:10.1103/PhysRevE.76.021703

    Article  Google Scholar 

  14. Bates MA (2004) Coarse grained models for flexible liquid crystals: parameterization of thebond fluctuation model. J Chem Phys 120:2026. doi:10.1063/1.1634551

    Article  CAS  Google Scholar 

  15. Cifelli M, Cinacchi G, Gaetani LD (2006) Smectic order parameters from diffusion data. J Chem Phys 125:164912. doi:10.1063/1.2359428

    Article  Google Scholar 

  16. Lin S, Numasawa N, Nose T, Lin J (2007) Coarse-grained molecular dynamics simulations for lyotropic liquid-crystalline solutions of semiflexible rod-like molecules. Mol Crys Liq Crys 466:53–76. doi:10.1080/15421400701246309

    Article  CAS  Google Scholar 

  17. Peter C, Site LD, Kremer K (2008) Classical simulations from the atomistic to the mesoscale and back: coarse graining an azobenzene liquid crystal. Soft Matter 4:859–869. doi:10.1039/B717324E

    Article  CAS  Google Scholar 

  18. Chang CY, Ju SP (2010) Investigation of methyl methacrylate-oligomer adsorbed on grooved substrate of different aspect ratios by coarse-grained configurational-bias Monte Carlo simulation. J Chem Phys 133:144710. doi:10.1063/1.3489661

    Article  Google Scholar 

  19. Hong SH, Verduzco R, Gleeson JT, Sprunt S, Jákli A (2011) Nanostructures of liquid crystal phases in mixtures of bent-core and rod-shaped molecules. Phys Rev E 83:061702. doi:10.1103/PhysRevE.83.061702

    Article  CAS  Google Scholar 

  20. Wen CH, Wu B, Gauza S, Nie X, Wu ST (2006) Dopant-enhanced vertical alignment of negative liquid crystals. Mol Cryst Liq Cryst 454:315–324. doi:10.1080/15421400600655949

    Article  Google Scholar 

  21. Muller HJ, Haase W (2004) Refractive indices, density and order parameters for some Biphenl cyclohexanes. Mol Crys Liq Crys 409:127–135. doi:10.1080/15421400490430887

    Article  Google Scholar 

  22. Clancy TC (2004) A novel approach to the regioselective synthesis of a disulfide-linked heterodimeric bicyclic bicyclic peptide mimetic of brain-derived neurotropic factor. Polymer 45:6999–7001. doi:0.1016/j.tetlet.2004.08.002

    Article  Google Scholar 

  23. Frenkel D (2002) Understanding molecular simulation. Academic, San Diego, CA

  24. Levitt M, Hirshberg M, Sharon R, Daggett V (1995) Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution. Comput Phys Commun 91:215–231. doi:10.1016/0010-4655(95)00049-L

    Article  CAS  Google Scholar 

  25. Zhang D, Liu Z, Xu R (2007) Monte Carlo simulation of the adsorption of C2-C7 linear alkanes in aluminophosphate AlPO4-11. Mol Sim 33:1247–1253. doi:10.1080/08927020701697683

    Article  CAS  Google Scholar 

  26. Bezrodna T, Melnyk V, Vorobjev V, Puchkovska G (2010) Low-temperature photoluminescence of 5CB liquid crystal. J Luminescence 130:1134–1141. doi:10.1016/j.jlumin.2010.02.009

    Article  CAS  Google Scholar 

  27. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680. doi:10.1126/science.220.4598.671

    Article  CAS  Google Scholar 

  28. Ju SP, Yang SH, Liao ML (2006) Study of molecular behavior in a water nanocluster: size and temperature effect. J Phys Chem B 110:9286–9290. doi:10.1021/jp056567p

    Article  CAS  Google Scholar 

  29. Ju SP, Lin JS, Lee WJ (2004) A molecular dynamics study of the tensile behaviour of ultrathin gold nanowires. Nanotechnology 15:1221. doi:10.1088/0957-4484/15/9/019

    Article  CAS  Google Scholar 

  30. Ju SP, Lee WJ, Lin JS, Liao ML (2006) Strain rate effect on tensile behavior of the helical multi-shell gold nanowires. Mater Chem Phys 100:48–53. doi:10.1016/j.matchemphys.2005.12.005

    Article  CAS  Google Scholar 

  31. Rapaport DC (2004) The art of molecular dynamics simulations. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support provided to this study by the National Science Council of the Republic of China under Project Grant No. NSC 96-2221-E-344-003 and NSC96-2628-E-110-005-MY2. The authors also thank the editor and referees for their helpful recommendations to make this paper more readable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-Pon Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, ML., Ju, SP., Chang, CY. et al. Size and chain length effects on structural behaviors of biphenylcyclohexane-based liquid crystal nanoclusters by a coarse-grained model. J Mol Model 18, 2321–2331 (2012). https://doi.org/10.1007/s00894-011-1254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1254-6

Keywords

Navigation