Skip to main content
Log in

NMR and NQR parameters of the SiC-doped on the (4,4) armchair single-walled BPNT: a computational study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structural properties, NMR and NQR parameters in the pristine and silicon carbide (SiC) doped boron phosphide nanotubes (BPNTs) were calculated using DFT methods (BLYP, B3LYP/6-31G*) in order to evaluate the influence of SiC-doped on the (4,4) armchair BPNTs. Nuclear magnetic resonance (NMR) parameters including isotropic (CSI) and anisotropic (CSA) chemical shielding parameters for the sites of various 13C, 29Si, 11B, and 31P atoms and quadrupole coupling constant (C Q ), and asymmetry parameter (η Q ) at the sites of various 11B nuclei were calculated in pristine and SiC- doped (4,4) armchair boron phosphide nanotubes models. The calculations indicated that doping of 11B and 31P atoms by C and Si atoms had a more significant influence on the calculated NMR and NQR parameters than did doping of the B and P atoms by Si and C atoms. In comparison with the pristine model, the SiC- doping in SiPCB model of the (4,4) armchair BPNTs reduces the energy gaps of the nanotubes and increases their electrical conductance. The NMR results showed that the B and P atoms which are directly bonded to the C atoms in the SiC-doped BPNTs have significant changes in the NMR parameters with respect to the B and P atoms which are directly bonded to the Si atoms in the SiC-doped BPNTs. The NQR results showed that in BPNTs, the B atoms at the edges of nanotubes play dominant roles in determining the electronic behaviors of BPNTs. Also, the NMR and NQR results detect that the Fig. 1b (SiPCB) model is a more reactive material than the pristine and the Fig. 1a (SiBCp) models of the (4,4) armchair BPNTs.

SiC-doped on the (4,4) armchair single-walled BPNT

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ijima S (1991) Nature 354:56–58

    Article  Google Scholar 

  2. Derycke V, Martel R, Appenzeller J, Avouris PH (2002) Appl Phys Lett 80:2773–2775

    Article  CAS  Google Scholar 

  3. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Science 286:1127–1129

    Article  CAS  Google Scholar 

  4. Zurek B, Autschbach J (2004) J Am Chem Soc 126:13079–13088

    Article  CAS  Google Scholar 

  5. Nojeh A, Lakatos GW, Peng S, Cho K, Pease RFW (2003) Nano Lett 3:1187–1190

    Article  CAS  Google Scholar 

  6. Hou S, Shen Z, Zhang J, Zhao X, Xue Z (2004) Chem Phys Lett 393:179–183

    Article  CAS  Google Scholar 

  7. Zhang M, Su ZM, Yan LK, Qiu YQ, Chen GH, Wang RS (2005) Chem Phys Lett 408:145–149

    Article  CAS  Google Scholar 

  8. Erkoc S (2001) J Mol Struct THEOCHEM 542:89–93

    Article  CAS  Google Scholar 

  9. Ferreira VA, Leite Alves HW (2008) J Cryst Growth 310:3973

    Article  CAS  Google Scholar 

  10. Mirzaei M, Gihai M (2010) Physica E 42:1667

    Article  CAS  Google Scholar 

  11. Golberg D, Bando Y, Tang CC, Zhi CY (2007) Adv Mater 19:2413–2432

    Article  CAS  Google Scholar 

  12. Mirzaei M (2009) Z Phys Chem 223:815

    Article  CAS  Google Scholar 

  13. Mirzaei M (2009) Physica E 41:883–885

    Article  CAS  Google Scholar 

  14. Bovey FA (1988) Nuclear magnetic resonance spectroscopy. Academic, SanDiego

    Google Scholar 

  15. Das TP, Han EL (1958) Nuclear quadrupole resonance spectroscopy. Academic, New York

    Google Scholar 

  16. Mirzaei M (2011) J Mol Model 17:89–96

    Article  CAS  Google Scholar 

  17. Mirzaei M, Hadipour NL (2006) J Phys Chem A 110:4833

    Article  CAS  Google Scholar 

  18. Mothana B, Ban F, Boyd RJ (2005) Chem Phys Lett 401:7

    Article  CAS  Google Scholar 

  19. Drago RS (1992) Physical methods for chemists, 2nd edn. Saunders College Publishing, Florida

    Google Scholar 

  20. Mirzaei M, Seif A, Hadipour NL (2008) Chem Phys Lett 461:246–248

    Article  CAS  Google Scholar 

  21. Pyykkö P (2001) Mol Phys 99:1617–1629

    Article  Google Scholar 

  22. Frisch MJ et al. (2003) Gaussian 03, Revision B03. Gaussian Inc, Pittsburgh

    Google Scholar 

  23. Mirzaei M, Nouri A (2010) J Mol Struct THEOCHEM 942:83–87

    Article  CAS  Google Scholar 

  24. Bengu E, Marks LD (2001) Phys Rev Lett 86:2385–2387

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad T. Baei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baei, M.T., Sayyad-Alangi, S.Z., Moradi, A.V. et al. NMR and NQR parameters of the SiC-doped on the (4,4) armchair single-walled BPNT: a computational study. J Mol Model 18, 881–889 (2012). https://doi.org/10.1007/s00894-011-1130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1130-4

Keywords

Navigation