Skip to main content
Log in

Computational characterization of the molecular structure and properties of Dye 7 for organic photovoltaics

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Organic dyes have great potential for its use in solar cells. In this recent work, the molecular structure and properties of Dye 7 were obtained using density functional theory (DFT) and different levels of calculation. Upon comparing the molecular structure and the ultraviolet visible spectrum with experimental data reported in the literature, it was found that the M05-2X/6-31G(d) level of calculation gave the best approximation. Once the appropriate methodology had been obtained, the molecule was characterized by obtaining the infrared spectrum, dipole moment, total energy, isotropic polarizability, molecular orbital energies, free energy of solvation in different solvents, and the chemical reactivity sites using the condensed Fukui functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DFT:

Density functional theory

TD-DFT:

Time-dependent density functional theory

IR:

Infrared

UV-vis:

Ultraviolet

Å:

Angstrom

λ max :

Wavelength of maximum absorption

THF:

Tetrahydrofuran

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

ΔG(solv):

Free energy of solvation

IEF-PCM:

Integral equation formalism of the polarized continuum model

References

  1. Grätzel M (2006) Photovoltaic performance and long-term stability of dye-sensitized meosocopic solar cells. C R Chimie 9:578–583. doi:10.1016/j.crci.2005.06.037

    Article  Google Scholar 

  2. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C 4:145–153. doi:10.1016/S1389-5567(03)00026-1

    Article  Google Scholar 

  3. Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A 164:3–14. doi:10.1016/j.jphotochem.2004.02.023

    Article  Google Scholar 

  4. Fan Z, Yan H, Jin S, Xiao Z, Wei L, Chun M, Yong H, Mao F, Zhishan B, Qing M (2009) Triphenylamine-based dyes for dye-sensitized solar cells. Dyes Pigments 81:224–230. doi:10.1016/j.dyepig.2008.10.012

    Article  Google Scholar 

  5. Hwang S, Lee J, Park C, Lee H, Kim C, Park C, Lee M, Lee W, Park J, Kim K, Park N, Kim C (2007) A highly efficient organic sensitizer for dye-sensitized solar cells. Chem Commun 2007:4887–4889. doi:10.1039/b709859f

    Article  Google Scholar 

  6. Buscaino R, Baiocchi C, Barolo C, Medana C, Grätzel M, Nazeeruddin M, Viscardi G (2008) A mass spectrometric analysis of sensitizer solution used for dye-sensitized solar cell. Inorg Chim Acta 361:798–805. doi:10.1016/j.ica.2007.07.016

    Article  CAS  Google Scholar 

  7. Tachan Z, Rühle S, Zaban A (2010) Dye-sensitized solar tubes: a new solar cell design for efficient current collection and improved cell sealing. Sol Energ Mater Sol Cells 94:317–322

    Article  CAS  Google Scholar 

  8. Shen P, Liu Y, Huang X, Zhao B, Xiang N, Fei J, Liu L, Wang X, Huang H, Tan S (2009) Efficient triphenylamine dyes for solar cells: effects of alkyl-substituents and π-conjugated thiophene unit. Dyes Pigments 83:187–197. doi:10.1016/j.dyepig.2009.04.005

    Article  CAS  Google Scholar 

  9. Chang Y, Chow T (2009) Dye-sensitized solar cell utilizing organic dyads containing triarylene conjugates. Tetrahedron 65:4726–4734

    Article  CAS  Google Scholar 

  10. Casanova D, Rotzinger F, Grätzel M (2010) Computational study of promising organic dyes for high-performance sensitized solar cells. J Chem Theor Comput 6:1219–1227. doi:10.1021/ct100069q

    Article  CAS  Google Scholar 

  11. El-Shishtawy R (2009) Functional dyes, and some hi-tech applications. Int J Photoenergy 2009:1–21. doi:10.1155/2009/434897

    Article  Google Scholar 

  12. Hagberg D, Edvinsson T, Sun L (2006) A novel organic chromophore for dye-sensitized nanostructured solar cells. Chem Commun 2245–2247. doi:10.1039/b603002e

  13. Parr R, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  14. Frisch MJ et al (2004) Gaussian 03W. Gaussian Inc., Wallingford

  15. Foresman J, Frisch A (1996) Exploring chemistry with electronic structure methods. Gaussian Inc., Pittsburgh

  16. Becke A (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  17. Becke A (1988) Density functional exchange energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. doi:10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  18. Lee C, Yang W, Parr R (1988) Development of the Colle–Salvatti correlation-energy formula into a funtional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  19. Stephens P, Devlin F, Chabalowski C, Frisch M (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional Force fields. J Phys Chem 98:11623–11627. doi:10.1021/j100096a001

    Article  CAS  Google Scholar 

  20. Ernzerhof M, Scuseria G (1999) Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J Chem Phys 110:5029–5036. doi:10.1063/1.478401

    Article  CAS  Google Scholar 

  21. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170. doi:10.1063/1.478522

    Article  CAS  Google Scholar 

  22. Tao J, Perdew J, Staroverov V, Scuseria G (2003) Climbing the density functional ladder: non-empirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:1–4. doi:10.1103/PhysRevLett.91.146401

    Article  Google Scholar 

  23. Staroverov V, Scuseria G, Tao J, Perdew J (2003) Comparative assessment of a new nonempirical density functional: molecules and hydrogen-bonded complexes. J Chem Phys 119:12129–12137. doi:10.1063/1.1626543

    Article  CAS  Google Scholar 

  24. Zhao Y, Schultz N, Truhlar D (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theor Comput 2:364–382. doi:10.1021/ct0502763

    Article  Google Scholar 

  25. Lewars E (2003) Computational chemistry: introduction to the theory and applications of molecular and quantum mechanics. Kluwer, Norwell

    Google Scholar 

  26. Young D (2001) Computational chemistry: a practical guide for applying techniques to real-world problems. Wiley, New York

    Google Scholar 

  27. Jensen F (2007) Introduction to computational chemistry. Wiley, Chichester

    Google Scholar 

  28. Cramer C (2002) Essentials of computational chemistry: theories and models. Wiley, Chichester

    Google Scholar 

  29. Burke K, Werschnik J, Gross E (2005) Time-dependent density functional theory: past, present, and future. J Chem Phys 123:1–9. doi:10.1063/1.1904586

    Article  Google Scholar 

  30. Stratmann R, Scuseria G, Frisch M (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218–8224. doi:10.1063/1.477483

    Article  CAS  Google Scholar 

  31. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464. doi:10.1016/0009-2614(96)00440-X

    Article  CAS  Google Scholar 

  32. Casida M, Jamorski C, Casida K, Salahub D (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4449. doi:10.1063/1.475855

    Article  CAS  Google Scholar 

  33. Gorelsky S (2010) SWizard program. http://www.sg-chem.net/, accessed 29 Sept 2010

  34. Gorelsky S (2010) AOMix program. http://www.sg-chem.net/, accessed 10 Sept 2010

  35. Gorelsky S, Lever A (2001) Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods. J Organomet Chem 635:187–196. doi:10.1016/S0022-328X(01)01079-8

    Article  CAS  Google Scholar 

  36. Green M (1982) Solar cells: operating principles, technology, and systems applications. Prentice-Hall, Upper Saddle River

    Google Scholar 

  37. De Angelis F, Fantacci S, Sgamelloti A (2007) An integrated computational tool for the study of the optical properties of nanoscale devices: application to solar cells and molecular wires. Theor Chem Acc 117:1093–1104. doi:10.1007/s00214-006-0224-z

    Article  Google Scholar 

  38. Weng Y, Wang Y, Asbury J, Ghosh H, Lian T (2000) Back electron transfer from TiO2 nanoparticles to FeIII(CN)6 3−: origin of non-single-exponential and particle size independent dynamics. J Phys Chem B 104:93–104. doi:10.1221/jp992522a

    Article  CAS  Google Scholar 

  39. Sharma S, Inamdar A, Im H, Kim B, Patil P (2011) Morphology dependent dye-sensitized solar cell properties of nanocrystallyne zinc oxide thin films. J Alloys Compd 509:2127–2131. doi:10.1016/j.jallcom.2010.10.163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was made possible by the support of Universidad Autónoma de Sinaloa through the Facultad de Ingeniería Mochis, by the PROFAPI2010/033 project, Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), and Consejo Nacional de Ciencia y Tecnología.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Glossman-Mitnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldenebro-López, J., Castorena-González, J., Flores-Holguin, N. et al. Computational characterization of the molecular structure and properties of Dye 7 for organic photovoltaics. J Mol Model 18, 835–842 (2012). https://doi.org/10.1007/s00894-011-1120-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1120-6

Keywords

Navigation