Skip to main content
Log in

Computational study of the electronic structures, UV-Vis spectra and static second-order nonlinear optical susceptibilities of macrocyclic thiophene derivatives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Using thiophene (which has a moderate resonance energy) as a spacer rather than benzene permits better π-electron delocalization and leads to a large nonlinear optical response. Thus, the nonlinear optical coefficients of a series of macrocyclic thiophene derivatives (C[3T_DA] n with C n symmetry) were studied, and their electronic structures, UV-Vis spectra and static second-order nonlinear optical susceptibilities (β 0) were computed. The calculated results showed that ΔE H-L increased and the UV-Vis spectrum redshifted as the number of C[3T_DA] units increased (one C[3T_DA] unit consists of trithiophene and diacetylene). The value of β 0 calculated by either the ZINDO-SOS or the FF method showed the same trend: the absolute value of β 0 increased as the number of units increased. The value of β 0 predicted by ZINDO-SOS was an order of magnitude larger than that predicted by the FF method. However, the results suggest that macrocyclic thiophene compounds potentially exhibit large static second-order nonlinear optical susceptibilities.

A series of macrocyclic thiophene derivatives were studied in theory. And they show great nonlinear optical susceptibilities through analyzing by ZINDO-SOS and FF methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jen AKY, Cai Y, Bedworth PV, Marder SR (1997) Adv Mater 9:132–135

    Article  CAS  Google Scholar 

  2. Wu X, Wu J, Liu Y, Jen AKY (1999) J Am Chem Soc 121:472–473

    Article  CAS  Google Scholar 

  3. Sun SS, Zhang C, Dalton LR, Garner SM, Chen A, Steier WH (1996) Chem Mater 8:2539–2541

    Article  CAS  Google Scholar 

  4. Jen AKY, Liu Y, Zheng L, Liu S, Drost KJ, Zhang Y, Dalton LR (1999) Adv Mater 11:452–455

    Article  CAS  Google Scholar 

  5. Cai C, Liakatas I, Wong MS, Bösch M, Bosshard C, Günter P, Concilio S, Tirelli N, Suter UW (1999) Org Lett 1:1847–1849

    Article  CAS  Google Scholar 

  6. Morley JO (1991) J Chem Soc Faraday Trans 87:3009–3013

    Google Scholar 

  7. Zhao HB, Qiu YQ, Liu CG, Sun SL, Liu Y, Wang RS (2010) J Org Chem 695:2251–2257

    Article  CAS  Google Scholar 

  8. Kim HM, Cho BR (2009) J Mater Chem 19:7402–7409

    Article  CAS  Google Scholar 

  9. Carella A, Castaldo A, Centore R, Fort A, Sirigu A, Tuzi A (2002) J Chem Soc Perkin Trans 2:1791–1795

    Google Scholar 

  10. Batista RMF, Costa SPG, Belsley M, Raposo MMM (2007) Tetrahedron 63:9842–9849

    Article  CAS  Google Scholar 

  11. Krawczyk P (2010) J Mol Model 16:659–668

    Article  CAS  Google Scholar 

  12. Kimur T, Kato M, Duan XM, Matsuda H, Fukuda T, Okada S, Nakanishi H (2000) Macromol Chem Phys 201:178–183

    Article  Google Scholar 

  13. Li J, Feng JK, Sun CC (1994) J Phys Chem 98:8636–8640

    Article  CAS  Google Scholar 

  14. Bartkowiak W, Misiaszek T (2000) Chem Phys 261:353–357

    Article  CAS  Google Scholar 

  15. Bhaskar A, Ramakrishna G, Hagedorn K, Varnavski O, Osteritz EM, Bauerle P, Goodson T III (2007) J Phys Chem B 111:946–954

    Google Scholar 

  16. Fuhrmann GL (2006) Synthesis and characterization of oligothiophene-based fully π-conjugated macrocycles. University of Ulm, Germany

  17. Fuhrmann G, Bäuerle P, Casadoa J, Zgierski MZ, Navarrete JTL (2006) J Chem Phys 125:044518

    Article  Google Scholar 

  18. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908–6918

    Article  CAS  Google Scholar 

  19. Zhao Y, Truhlar DG (2005) J Chem Theory Comput 1:415–432

    Google Scholar 

  20. Perdew JP (1991) In: Ziesche P, Eschig H (eds) Electronic structure of solids ’91. Akademie Verlag, Berlin, p 11

  21. Becke AD (1996) J Chem Phys 104:1040–1046

    Article  CAS  Google Scholar 

  22. Ridley J, Zerner MC (1973) Theor Chim Acta 32:111–134

    Article  CAS  Google Scholar 

  23. Krätschmer W, Lamb LD, Fostiropoulos K, Human DR (1900) Nature 347:354–358

    Article  Google Scholar 

  24. Lyoda M, Sultana F, Sasaki S, Yoshids M (1994) J Chem Soc Chem Commun 1929–1930

  25. Orr BJ, Ward TF (1971) Mol Phys 20:513–526

    Article  CAS  Google Scholar 

  26. Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195–242

    Article  CAS  Google Scholar 

  27. Bishop DM (1994) Adv Quantum Chem 25:1–3

    Article  CAS  Google Scholar 

  28. Ulman A, Willand CS, Kohler W, Tobello DR, Williams DJ, Handley L (1990) J Am Chem Soc 112:7083–7090

    Article  CAS  Google Scholar 

  29. Fu W, Feng JK, Pan GB, Zhang X (2001) Theor Chem Acc 106:241–250

    Article  CAS  Google Scholar 

  30. Feng JK, Gao XL, Sun CC (1992) Chin Sci Bull 37:1441–1445

    CAS  Google Scholar 

  31. Gao XL, Feng JK, Sun CC (1992) Int J Quantum Chem 42:1747–1758

    Article  CAS  Google Scholar 

  32. Li J, Feng JK, Sun CC (1994) Int J Quantum Chem 52:673–680

    Article  CAS  Google Scholar 

  33. Ren AM, Feng JK, Zhao XX, Liu CL, Su ZM (2001) Chem J Chin Univ 22:1197–1200

    CAS  Google Scholar 

  34. Fu W, Feng JK, Pan GB (2001) J Mol Struct THEOCHEM 545:157–165

    Article  CAS  Google Scholar 

  35. LeCours SM, Guan HW, DiMagno SG, Wang CH, Therien MJ (1996) J Am Chem Soc 118:1497–1503

    Article  Google Scholar 

  36. Kanis DR, Ratner MA, Marks TJ (1992) J Am Chem Soc 114:10338–10357

    Article  CAS  Google Scholar 

  37. Oudar JL, Chemla DS (1977) J Chem Phys 66:2664–2668

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03, revision D02. Gaussian Inc., Pittsburgh

  39. Thanthiriwatte KS, Silva KMND (2002) J Mol Struct THEOCHEM 617:169–175

    Article  CAS  Google Scholar 

  40. Liyanage PS, Silva RMD, Silva KMND (2003) J Mol Struct THEOCHEM 639:195–201

    Article  CAS  Google Scholar 

  41. Kurtz HA, Stewart JJP, Dieter K (1990) J Comput Chem 11:82–87

    Article  CAS  Google Scholar 

  42. Huang S, Ren AM, Li Z, Zhao Y, Min CG (2010) Chem J Chin Univ 3:553–558

    Google Scholar 

  43. Fuhrmann G, Debaerdemaeker T, Bäuerle P (2003) Chem Commun 948–949

  44. Kromer J, Rios-Carreras I, Fuhrmann G, Musch C, Wunderlin M, Debaerdemaeker T, Mena-Osteritz E, Bauerle (2000) Angew Chem Int Ed 39:3481–3486

    Google Scholar 

  45. Feng JK (2005) Acta Chim Sinica 63:1245–1256

    CAS  Google Scholar 

  46. Xu GX, Li LM (1980) Sci China 2:136–151

  47. Chou SSP, Sun DJ, Huang JY, Yang PK, Linc HC (1996) Tetrahedron Lett 37:7279–7282

    Article  CAS  Google Scholar 

  48. Marder SR, Perry JW, Bourhill G, Gorman CB, Tiemann BG, Mansour K (1993) Science 261:186–189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (nos. 20973078 and 20673045), by special funding given to basic scientific research projects for Central Colleges, by the Open Project of the State Key Laboratory for Supramolecular Structure and Material of Jilin University (SKLSSM200716), and by the Graduate Innovation Fund of Jilin University (no. 20111031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai-Min Ren or Jing-Fu Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Ren, AM., Zou, LY. et al. Computational study of the electronic structures, UV-Vis spectra and static second-order nonlinear optical susceptibilities of macrocyclic thiophene derivatives. J Mol Model 18, 393–404 (2012). https://doi.org/10.1007/s00894-011-1082-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1082-8

Keywords

Navigation