Skip to main content
Log in

Unique example of amyloid aggregates stabilized by main chain H-bond instead of the steric zipper: molecular dynamics study of the amyloidogenic segment of amylin wild-type and mutants

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Most proteins do not aggregate while in their native functional states. However, they may be disturbed from their native conformation by certain change in the environment, and form unwanted oligomeric or polymeric aggregates. Recent experimental data demonstrate that soluble oligomers of amyloidogenic proteins are responsible for amyloidosis and its cytotoxicity. Human islet amyloid polypeptide (IAPP or amylin) is a 37-residue hormone found as fibrillar deposits in pancreatic extracts of nearly all type II diabetics. In this study we performed in silico mutation analysis to examine the stability of the double layer five strand aggregates formed by heptapeptide NNFGAIL segment from amyline peptide. This segment is one of the shortest fragments that can form amyloid fibrils similar to those formed by the full length peptide. The mutants obtained by single glycine replacement were also studied to investigate the specificity of the dry self-complementary interface between the neighboring β-sheet layers. The molecular dynamics simulations of the aggregates run for 20 ns at 330 K, the degree of the aggregate disassembly was investigated using several geometry analysis tools: the root mean square deviations of the Cα atoms, root mean square fluctuations per residue, twist angles, interstrand distances, fraction of the secondary structure elements, and number of H-bonds. The analysis shows that most mutations make the aggregates unstable, and their stabilities were dependent to a large extent on the position of replaced residues. Our mutational simulations are in agreement with the pervious experimental observations. We also used free binding energy calculations to determine the role of different components: nonpolar effects, electrostatics and entropy in binding. Nonpolar effects remained consistently more favorable in wild type and mutants reinforcing the importance of hydrophobic effects in protein-protein binding. While entropy systematically opposed binding in all cases, there was no clear trend in the entropy difference between wildtype and glycine mutants. Free energy decomposition shows residues situated at the interface were found to make favorable contributions to the peptide-peptide association. The study of the wild type and mutants in an explicit solvent could provide valuable insight into the future computer guided design efforts for the amyloid aggregation inhibitor.

The structure of NNFGAIL aggregate lacks side-chain steric-zipper interlocking. Instead, the β-sheet stacking is stabilized by the main chains packing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chiti F, Dobson CM (2006) Annu Rev Biochem 75:333–366. doi:10.1146/annurev.biochem.75.101304.123901

    Article  CAS  Google Scholar 

  2. Kitamura A, Kubota H (2010) FEBS J 277:1369–1379. doi:10.1111/j.1742-4658.2010.07570.x

    Article  CAS  Google Scholar 

  3. Antzutkin ON, Leapman RD, Balbach JJ, Tycko R (2002) Biochemistry 41:15436–15450. doi:10.1021/bi0204185

    Article  CAS  Google Scholar 

  4. Cooper GJS, Willis AC, Clark A, Turner RC, Sim RB, Reid KBM (1987) Proc Natl Acad Sci USA 84:8628–8632

    Article  CAS  Google Scholar 

  5. Westermark P, Wernstedt C, Wilander E, Hayden DW, Obrien TD, Johnson KH (1987) Proc Natl Acad Sci USA 84:3881–3885

    Article  CAS  Google Scholar 

  6. Hoppener JWM, Oosterwijk C, Nieuwenhuis MG, Posthuma G, Thijssen JHH, Vroom TM, Ahren B, Lips CJM (1999) Diabetologia 42:427–434

    Article  CAS  Google Scholar 

  7. Glenner GG, Eanes ED, Wiley CA (1988) Biochem Biophys Res Commun 155:608–614

    Article  CAS  Google Scholar 

  8. Nilsson MR, Raleigh DP (1999) J Mol Biol 294:1375–1385

    Article  CAS  Google Scholar 

  9. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJW, McFarlane HT, Madsen AO, Riekel C, Eisenberg D (2007) Nature 447:453–457. doi:10.1038/nature05695

    Article  CAS  Google Scholar 

  10. Griffiths JM, Ashburn TT, Auger M, Costa PR, Griffin RG, Lansbury PT (1995) J Am Chem Soc 117:3539–3546

    Article  CAS  Google Scholar 

  11. Tenidis K, Waldner M, Bernhagen J, Fischle W, Bergmann M, Weber M, Merkle ML, Voelter W, Brunner H, Kapurniotu A (2000) J Mol Biol 295:1055–1071

    Article  CAS  Google Scholar 

  12. Jaikaran E, Higham CE, Serpell LC, Zurdo J, Gross M, Clark A, Fraser PE (2001) J Mol Biol 308:515–525. doi:10.1006/jmbi.2001.4593

    Article  CAS  Google Scholar 

  13. Wiltzius JJW, Sievers SA, Sawaya MR, Cascio D, Popov D, Riekel C, Eisenberg D (2008) Protein Sci 17:1467–1474. doi:10.1110/ps.036509.108

    Article  CAS  Google Scholar 

  14. Andreetto E, Yan LM, Tatarek-Nossol M, Velkova A, Frank R, Kapurniotu A (2010) Angew Chem Int Ed 49:3081–3085. doi:10.1002/anie.200904902

    Article  CAS  Google Scholar 

  15. De Simone A, Pedone C, Vitagliano L (2008) Biochem Biophys Res Commun 366:800–806. doi:10.1016/j.bbrc.2007.12.047

    Article  Google Scholar 

  16. Williams AD, Portelius E, Kheterpal I, Guo JT, Cook KD, Xu Y, Wetzel R (2004) J Mol Biol 335:833–842. doi:10.1016/j.jmb.2003.11.008

    Article  CAS  Google Scholar 

  17. Tzotzos S, Doig A (2010) Protein Sci 19:327–348. doi:10.1002/pro.314

    Article  CAS  Google Scholar 

  18. Hawkes CA, Ng V, McLaurin J (2009) Drug Develop Res 70:111–124. doi:10.1002/ddr.20290

    Article  CAS  Google Scholar 

  19. Potter KJ, Scrocchi LA, Warnock GL, Ao ZL, Younker MA, Rosenberg L, Lipsett M, Verchere CB, Fraser PE (2009) Biochim Biophys Acta Gen Subj 1790:566–574. doi:10.1016/j.bbagen.2009.02.013

    Article  CAS  Google Scholar 

  20. Moriarty DF, Raleigh DP (1999) Biochemistry 38:1811–1818

    Article  CAS  Google Scholar 

  21. Abedini A, Raleigh DP (2006) J Mol Biol 355:274–281. doi:10.1016/j.jmb.2005.10.052

    Article  CAS  Google Scholar 

  22. Vitagliano L, Stanzione F, De Simone A, Esposito L (2009) Biopolymers 91:1161–1171. doi:10.1002/bip.21182

    Article  CAS  Google Scholar 

  23. Esposito L, Pedone C, Vitagliano L (2006) Proc Natl Acad Sci USA 103:11533–11538. doi:10.1073/pnas.0602345103

    Article  CAS  Google Scholar 

  24. Zheng J (2008) MB, Chang Y, Nussinov R. Front Biosci 13:3919–3930

    CAS  Google Scholar 

  25. Wu C, Lei HX, Duan Y (2005) J Am Chem Soc 127:13530–13537. doi:10.1021/ja050767x

    Article  CAS  Google Scholar 

  26. Wu C, Lei HX, Wang ZX, Zhang W, Duan Y (2006) Biophys J 91:3664–3672. doi:10.1529/biophysj.106.081877

    Article  CAS  Google Scholar 

  27. Raman EP, Takeda T, Klimov DK (2009) Biophys J 97:2070–2079. doi:10.1016/j.bpj.2009.07.032

    Article  CAS  Google Scholar 

  28. Berhanu WM, Masunov AE (2010) Biophys Chem 149:12–21. doi:10.1016/j.bpc.2010.03.003

    Article  CAS  Google Scholar 

  29. Wang J, Tan CH, Chen HF, Luo R (2008) Biophys J 95:5037–5047. doi:10.1529/biophysj.108.131672

    Article  CAS  Google Scholar 

  30. Xu WX, Ping J, Li WF, Mu YG (2009) J Chem Phys 130:164709. doi:10.1063/1.3123532

    Article  Google Scholar 

  31. Xu YC, Shen JJ, Luo XM, Zhu WL, Chen KX, Ma JP, Jiang HL (2005) Proc Natl Acad Sci USA 102:5403–5407. doi:10.1073/pnas.0501218102

    Article  CAS  Google Scholar 

  32. Zanuy D, Nussinov R (2003) J Mol Biol 329:565–584. doi:10.1016/s0022-2836(03)00491-1

    Article  CAS  Google Scholar 

  33. Zanuy D, Porat Y, Gazit E, Nussinov R (2004) Structure 12:439–455. doi:10.1016/j.str.2004.02.002

    Article  CAS  Google Scholar 

  34. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2010) AMBER 11 University of California, San Francisco

  35. Sasahara K, Naiki H, Goto Y (2005) J Mol Biol 352:700–711. doi:10.1016/j.jmb.2005.07.033

    Article  CAS  Google Scholar 

  36. Meersman F, Dobson CM (2006) BBA-Proteins Proteom 1764:452–460. doi:0.1016/j.bbapap.2005.10.021

    Article  CAS  Google Scholar 

  37. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  38. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) J Comput Chem 26:1668–1688. doi:10.1002/jcc.20290

    Article  CAS  Google Scholar 

  39. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Chem s 23:327–341

    CAS  Google Scholar 

  40. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  41. Fabiola F, Bertram R, Korostelev A, Chapman MS (2002) Protein Sci 11:1415–1423. doi:10.1110/ps.4890102

    Article  CAS  Google Scholar 

  42. Paparcone R, Pires MA, Buehler MJ (2010) Biochemistry 49:8967–8977. doi:10.1021/bi100953t

    Article  CAS  Google Scholar 

  43. Center SDSUoC (2009)

  44. Zheng J, Jang H, Ma B, Tsai CJ, Nussinov R (2007) Biophys J 93:3046–3057. doi:10.1529/biophysj.107.110700

    Article  CAS  Google Scholar 

  45. Buchete NV, Hummer G (2007) Biophys J 92:3032–3039. doi:10.1529/biophysj.106.100404

    Article  CAS  Google Scholar 

  46. Huet A, Derreumaux P (2006) Biophys J 91:3829–3840. doi:10.1526/biophysj.106.090993

    Article  CAS  Google Scholar 

  47. Porat Y, Mazor Y, Efrat S, Gazit E (2004) Biochemistry 43:14454–14462. doi:10.1021/bi048582a

    Article  CAS  Google Scholar 

  48. Zheng J, Ma BY, Tsai CJ, Nussinov R (2006) Biophys J 91:824–833. doi:10.1529/biophysj.106.083246

    Article  CAS  Google Scholar 

  49. Azriel R, Gazit E (2001) J Biol Chem 276:34156–34161

    Article  CAS  Google Scholar 

  50. Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM (2003) Nature 424:805–808. doi:10.1038/nature01891

    Article  CAS  Google Scholar 

  51. Porat Y, Stepensky A, Ding FX, Naider F, Gazit E (2003) Biopolymers 69:161–164. doi:10.1002/bip.10386

    Article  CAS  Google Scholar 

  52. Bartolini M, Andrisano V (2010) ChemBioChem 11:1018–1035. doi:10.1002/cbic.200900666

    CAS  Google Scholar 

  53. Dasilva KA, Shaw JE, McLaurin J (2009) Exp Neurol 223:311–321

    Article  Google Scholar 

  54. Pace CN (2009) Nat Struct Mol Biol 16:681–682. doi:10.1038/nsmb0709-681

    Article  CAS  Google Scholar 

  55. Kabsch W, Sander C (1983) Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

  56. Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Acc Chem Res 33:889–897. doi:10.1021/ar000033j

    Article  CAS  Google Scholar 

  57. Massova I, Kollman PA (1999) J Am Chem Soc 121:8133–8143

    Article  CAS  Google Scholar 

  58. Campanera JM, Pouplana R (2010) Molecules 15:2730–2748. doi:10.3390/molecules15042730

    Article  CAS  Google Scholar 

  59. Chong LT, Duan Y, Wang L, Massova I, Kollman PA (1999) Proc Natl Acad Sci USA 96:14330–14335

    Article  CAS  Google Scholar 

  60. Wang JM, Morin P, Wang W, Kollman PA (2001) J Am Chem Soc 123:5221–5230. doi:10.1021/ja003834q

    Article  CAS  Google Scholar 

  61. Gohlke H, Kiel C, Case DA (2003) J Mol Biol 330:891–913. doi:10.1016/s0022-2836(03)00610-7

    Article  CAS  Google Scholar 

  62. Wang W, Kollman PA (2000) J Mol Biol 303:567–582. doi:10.1006/jmbi.2000.4057

    Article  CAS  Google Scholar 

  63. Kuhn B, Kollman PA (2000) J Am Chem Soc 122:3909–3916

    Article  CAS  Google Scholar 

  64. Lee TS, Kollman PA (2000) J Am Chem Soc 122:4385–4393

    Article  CAS  Google Scholar 

  65. Huo S, Massova I, Kollman PA (2002) J Comput Chem 23:15–27

    Article  CAS  Google Scholar 

  66. Lafont V, Schaefer M, Stote RH, Altschuh D, Dejaegere A (2007) Proteins 67:418–434. doi:10.1002/prot.21259

    Article  CAS  Google Scholar 

  67. Zoete V, Meuwly M, Karplus M (2005) Proteins 61:79–93. doi:10.1002/prot.20528

    Article  CAS  Google Scholar 

  68. Archontis G, Simonson T, Karplus M (2001) J Mol Biol 306:307–327. doi:10.1006/jmbi.2000.4285

    Article  CAS  Google Scholar 

  69. Carrascal N, Green DF (2010) J Phys Chem B 114:5096–5116. doi:10.1021/jp910540z

    Article  CAS  Google Scholar 

  70. Hendsch ZS, Tidor B (1999) Protein Sci 8:1381–1392

    Article  CAS  Google Scholar 

  71. Periole X, Rampioni A, Vendruscolo M, Mark AE (2009) J Phys Chem B 113:1728–1737. doi:10.1021/jp8078259

    Article  CAS  Google Scholar 

  72. De Simone A, Esposito L, Pedone C, Vitagliano L (2008) Biophys J 95:1965–1973. doi:10.1529/biophysj.108.129213

    Article  Google Scholar 

  73. Amijee H, Madine J, Middleton DA, Doig AJ (2009) Biochem Soc Trans 37:692–696. doi:10.1042/bst0370692

    Article  CAS  Google Scholar 

  74. Sellin D, Yan LM, Kapurniotu A, Winter R (2010) Biophys Chem 150:73–79. doi:10.1016/j.bpc.2010.01.006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation (CHE0832622), and used the resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors are thankful to Dr. Michael Sawaya for providing the initial aggregate models, and for his helpful discussions. WMB also thanks Dr. Zhengji Zhao of NERSC for her help with the software installation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artëm E. Masunov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berhanu, W.M., Masunov, A.E. Unique example of amyloid aggregates stabilized by main chain H-bond instead of the steric zipper: molecular dynamics study of the amyloidogenic segment of amylin wild-type and mutants. J Mol Model 18, 891–903 (2012). https://doi.org/10.1007/s00894-011-1030-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1030-7

Keywords

Navigation