Skip to main content
Log in

Density functional theory study of the potassium complexation of an unsymmetrical 1,3-alternate calix[4]-crown-5-N-azacrown-5 bearing two different crown rings

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Theoretical studies of an unsymmetrical calix[4]-crown-5-N-azacrown-5 (1) in a fixed 1,3-alternate conformation and the complexes 1·K+(a), 1·K+(b), 1·K+(c) and 1·K+K+ were performed using density functional theory (DFT) at the B3LYP/6-31G* level. The fully optimized geometric structures of the free macroligand and its 1:1 and 1:2 complexes, as obtained from DFT calculations, were used to perform natural bond orbital (NBO) analysis. The two main types of driving force metal–ligand and cation–π interactions were investigated. NBO analysis indicated that the stabilization interaction energies (E 2) for O…K+ and N…K+ are larger than the other intermolecular interactions in each complex. The significant increase in electron density in the RY* or LP* orbitals of K+ results in strong host–guest interactions. In addition, the intermolecular interaction thermal energies (ΔE, ΔH, ΔG) were calculated by frequency analysis at the B3LYP/6-31G* level. For all structures, the most pronounced changes in the geometric parameters upon interaction are observed in the calix[4]arene molecule. The results indicate that both the intermolecular electrostatic interactions and the cation–π interactions between the metal ion and π orbitals of the two pairs that face the inverted benzene rings play a significant role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Van Loon JD, Verboom W, Reinhoudt DN (1992) Org Prep Proced Int 24:437–462

    Article  Google Scholar 

  2. Gutsche CD, Bauer LJ (1985) J Am Chem Soc 107:6052–6059

    Article  CAS  Google Scholar 

  3. Böhmer V (1995) Angew Chem 34:713–745

    Article  Google Scholar 

  4. Casnati A, Pochini A, Ungaro R, Ugozzoli F, Arnaud-Neu F, Fanni S, Schwing MJ, Egberink RJM, de Jong F, Reinhoudt DN (1995) J Am Chem Soc 117:2767–2777

    Article  CAS  Google Scholar 

  5. Thuéry P, Nierlich M, Lamare V, Dozol JF, Asfari Z, Vicens J (2000) J Incl Phenom Macrocycl Chem 36:375–408

    Article  Google Scholar 

  6. Kim JS, Suh IH, Kim JK, Cho MH (1998) J Chem Soc Perkin Trans 1:2307–2312

    Google Scholar 

  7. Kim JS, Ohki A, Ueki R, Ishizuka T, Shimotashiro T, Maeda S (1999) Talanta 48:705–710

    Article  CAS  Google Scholar 

  8. Kim JS, Ohki A, Cho MH, Kim JK, Ra DY, Cho NS, Bartsch RA, Lee KW, Oh WZ (1997) Bull Korean Chem Soc 18:1014–1017

    CAS  Google Scholar 

  9. Kim JS, Lee WK, Ra DY, Lee YI, Choi WK, Lee KW, Oh WZ (1998) Microchem J 59:464–471

    Article  CAS  Google Scholar 

  10. Kim JS, Pang JH, Yu IY, Lee WK, Suh IH, Kim JK, Cho MH, Kim ET, Ra DY (1999) J Chem Soc Perkin Trans 2:837–846

    Google Scholar 

  11. Asfari Z, Abidi R, Arnaud-Neu F, Vicens J (1992) J Incl Phenom 13:163–169

    Article  CAS  Google Scholar 

  12. Asfari Z, Weiss J, Pappalardo S, Vicens J (1993) Pure Appl Chem 65:585–590

    Article  CAS  Google Scholar 

  13. Hill C, Dozol JF, Lamare V, Rouquette H, Eymard S, Tournois B, Vicens J, Asfari Z, Bressot C, Ungaro R, Casnati A (1994) J Incl Phenom 19:399–408

    Article  CAS  Google Scholar 

  14. Bouquant J, Delville A, Grandjean J, Laszlo P (1982) J Am Chem Soc 104:686–691

    Article  CAS  Google Scholar 

  15. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  16. Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785–789

    Article  Google Scholar 

  17. Korth HG, de Heer MI, Mulder P (2002) J Phys Chem A 106:8779–8789

    Article  CAS  Google Scholar 

  18. Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612–5626

    Article  CAS  Google Scholar 

  19. Chowdhury PK (2003) J Phys Chem A 107:5692–5696

    Article  CAS  Google Scholar 

  20. Chis V (2004) Chem Phys 300:1–11

    Article  CAS  Google Scholar 

  21. Asensio A, Kobko N, Dannenberg JJ (2003) J Phys Chem A 107:6441–6443

    Article  CAS  Google Scholar 

  22. Müller A, Losada M, Leutwyler S (2004) J Phys Chem A 108:157–165

    Article  Google Scholar 

  23. Gonçalves NS, Cristiano R, Pizzolatti MG, da Silva Miranda F (2005) J Mol Struct THEOCHEM 733:53–61

  24. Bernardino RJ, Cabral BJC (1999) J Phys Chem A 103:9080–9085

    Article  CAS  Google Scholar 

  25. Bernardino RJ, Cabral BJC (2002) Supramol Chem 14:57–66

    Article  CAS  Google Scholar 

  26. Bemardino RJ, Cabral BJC (2001) J Mol Struct THEOCHEM 549:253–260

    Article  Google Scholar 

  27. Hay BP, Nicholas JB, Feller D (2000) J Am Chem Soc 122:10083–10089

    Article  CAS  Google Scholar 

  28. Dybal J, Makrlĺk E, Vaňura P, Budka J (2008) Monatsh Chem 139:1175–1178

    Article  CAS  Google Scholar 

  29. Ilchenko NN, Kuchma OV, Zub YL, Leszczynski J (2007) J Mol Struct THEOCHEM 815:83–86

    Article  CAS  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomeli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salavador P, Dannenberg JJ, Zakrewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 2003 W, revision B.05. Gaussian Inc., Pittsburgh

  31. Reed AE, Weinhold F (1983) J Chem Phys 78:4066–4073

    Article  CAS  Google Scholar 

  32. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  33. Redd AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  Google Scholar 

  34. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  35. Iwamoto K, Shinkai S (1992) J Org Chem 57:7066–7073

    Article  CAS  Google Scholar 

  36. Bott SG, Coleman AW, Atwood JL (1987) J Incl Phenom Macrocycl Chem 5:747–758

    Article  CAS  Google Scholar 

  37. Fujimoto K, Nishiyama N, Tsuzuki H, Shinkai S (1992) J Chem Soc Perkin Trans 2:643–648

    Google Scholar 

  38. Kikuchi T, Iki H, Tsuzuki H, Shinkai S (1993) Supramol Chem 1:103–106

    Article  CAS  Google Scholar 

  39. Grootenhuis PDJ, Kollman PA, Groenen LC, Reinhoudt DN, van Hummel GJ, Ugozzoli F, Andreetti GD (1990) J Am Chem Soc 112:4165–4176

    Article  CAS  Google Scholar 

  40. Macias AT, Norton JE, Evanseck JD (2003) J Am Chem Soc 125:2351–2360

    Article  CAS  Google Scholar 

  41. Shannon RD (1976) Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  42. Shchori E, Nae N, Jagur-Grodzinski J (1975) J Chem Soc Dalton Trans 2:2381–2386

    Google Scholar 

  43. Kolthoff IM, Chantooni MK (1980) Anal Chem 52:1039–1044

    Article  CAS  Google Scholar 

  44. Hofmanova A, Koryta J, Brezine M, Mitall M (1978) Inorg Chim Acta 28:73–76

    Article  CAS  Google Scholar 

  45. Kima S, Kima H, Noh KH, Lee SH, Kimb SK, Kimc JS (2003) Talanta 61:709–716

    Article  Google Scholar 

  46. Kim JS, Thuéry P, Nierlich M, Rim JA, Yang SH, Lee JK, Cho KH, Lee JH, Vicens J (2001) Bull Korean Chem Soc 22:321–324

    Google Scholar 

  47. Hopkins HP Jr, Norman AB (1980) J Phys Chem 84:309–314

    Article  CAS  Google Scholar 

  48. Smetana AJ, Popov AI (1980) J Solution Chem 9:183–196

    Article  CAS  Google Scholar 

  49. Lamb JD, Izatt RM, Swain CS, Christensen JJ (1980) J Am Chem Soc 102:475–479

    Article  CAS  Google Scholar 

  50. Izatt RM, Terry RE, Haymore BL, Hansen LD, Dalley NK, Avondet AG, Christensen JJ (1976) J Am Chem Soc 98:7620–7626

    Article  CAS  Google Scholar 

  51. Takeda Y, Yano H, Ishibashi M, Isozumi H (1980) Bull Chem Soc Jpn 53:72–76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author wish to acknowledge financial support from the Scientific Research Fund of the Hunan Provincial Education Department (No. 09A091) for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X., Wang, X., Shen, K. et al. Density functional theory study of the potassium complexation of an unsymmetrical 1,3-alternate calix[4]-crown-5-N-azacrown-5 bearing two different crown rings. J Mol Model 17, 2659–2668 (2011). https://doi.org/10.1007/s00894-010-0945-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0945-8

Keywords

Navigation