Skip to main content
Log in

Quantum chemical studies on the aminopolynitropyrazoles

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have explored the geometric and electronic structures, band gap, thermodynamic properties, density, detonation velocity and detonation pressure of aminopolynitropyrazoles using the density functional theory (DFT) at the B3LYP/aug-cc-pVDZ level. The calculated detonation velocity and detonation pressure, stability and sensitivity of model compounds appear to be promising compared to the known explosives 3,4-dinitro-1 H-pyrazole (3,4-DNP), 3,5-dinitro-1 H-pyrazole (3,5-DNP), hexahydro-1,3,5-trinitro-1,3,5-triazinane (RDX) and octahydro-1,3,5,7-tetranitro-l,3,5,7-tetraazocane (HMX). The position of NH2 group in the polynitropyrazoles presumably determines the structure, stability, sensitivity, density, detonation velocity and detonation pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kanishchev MI, Korneeva NV, Shevlev SA, Fainzil'berg AA (1988) Chem Heterocycl Compd 24:353–370

    Article  Google Scholar 

  2. Shevelev SA, Dalinger IL, Shkineva TK, Ugrak BJ, Guleskaya MV, Kanishchev IJ (1993) Russ Chem Bull 42:1063–1068

    Article  Google Scholar 

  3. Zaitsev AA, Dalinger IL, Shevelev SA (2009) Russ Chem Rev 78:589–627

    Article  CAS  Google Scholar 

  4. Huttel R, Buchele F (1955) Chem Ber 88:1586–1590

    Article  CAS  Google Scholar 

  5. Janssen JWAM, Habraken CL (1971) J Org Chem 36:3081–3083

    Article  Google Scholar 

  6. Janssen JWAM, Koeners HJ, Kruse CG, Habraken CL (1973) J Org Chem 38:1777–1782

    Article  CAS  Google Scholar 

  7. Janssen JWAM, Habraken CL, Louw R (1976) J Org Chem 41:1758–1762

    Article  CAS  Google Scholar 

  8. Habraken CL, Poels EK (1977) J Org Chem 42:2893–2895

    Article  CAS  Google Scholar 

  9. Habraken CL, Fernandes PC, Balaian S, van Erk KC (1970) Tetrahedraon Lett 479-480

  10. Grimmett MR, Lim KHR (1978) Aust J Chem 31:689–691

    Article  CAS  Google Scholar 

  11. Katritzky AR, Scriven EFV, Majundar S, Akhmedova RG, Akhmedov NG, Vakulenko AV (2005) ARKIVOC 3:179–191

    Google Scholar 

  12. Schmidt RD, Lee GS, Pagoria PF, Mitchell AR, Gilardi R (2001) J Heterocycl Chem 38:1227–1230

    Article  CAS  Google Scholar 

  13. Dalinger IL, Vatsadze IA, Shkineva TK, Papova GP, Sheveleev SA (2010) Mendeleev Commun 20:253–254

    Article  CAS  Google Scholar 

  14. Herve G, Roussel C, Graindorg H (2010) Angew Chem Int Edn 49:3177–3181

    Article  CAS  Google Scholar 

  15. Li YF, Fan XW, Wang ZY, Ju XH (2009) J Mol Struct THEOCHEM 896:96–102

    Article  CAS  Google Scholar 

  16. Ravi P, Gore GM, Venkatesan V, Tewari SP, Sikder AK (2010) J Hazard Mater 183:859–865

    Article  CAS  Google Scholar 

  17. Depluech A, Cherville J (1978) Propellants Explos Pyrotech 3:169–175

    Article  Google Scholar 

  18. Depluech A, Cherville J (1979) Propellants Explos Pyrotech 4:121–129

    Article  Google Scholar 

  19. Xiao HM (1994) Molecular orbital theory of nitro compounds. Publishing House of Defense Industry, Peking

    Google Scholar 

  20. Kamlet MJ, Adolph HG (1979) Propellants Explos Pyrotech 4:30–34

    Article  CAS  Google Scholar 

  21. Mullay J (1987) Propellants Explos Pyrotech 12:60–63

    Article  CAS  Google Scholar 

  22. Politzer P, Murray JS (1995) Mol Phys 86:251–255

    Article  CAS  Google Scholar 

  23. Murray JS, Concha MC, Politzer P (2009) Mol Phys 107:89–97

    Article  CAS  Google Scholar 

  24. Rice BM, Hare JJ (2002) J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

  25. Brinck T, Murray JS, Politzer P (1992) Mol Phys 76:609–617

    Article  CAS  Google Scholar 

  26. Murray JS, Lane P, Politzer P (1995) Mol Phys 85:1–8

    Article  CAS  Google Scholar 

  27. Murray JS, Lane P, Politzer P (1998) Mol Phys 93:187–194

    Article  CAS  Google Scholar 

  28. Pospìŝil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) J Mol Model 16:895–901

    Article  Google Scholar 

  29. Zhang C, Shu Y, Huang Y, Zhao X, Dong H (2005) J Phys Chem B 109:8978–8982

    Article  CAS  Google Scholar 

  30. Zhang C, Shu Y, Huang Y, Wang X (2005) J Energetic Mater 23:107–119

    Article  Google Scholar 

  31. Zeman S (1999) J Energetic Mater 17:305–330

    Article  CAS  Google Scholar 

  32. Zeman S (2006) J Hazard Mater 132:155–164

    Article  CAS  Google Scholar 

  33. Zhi C, Cheng X (2010) Propellants Explos Pyrotech. doi:10.1002/prep.20090092

    Google Scholar 

  34. Zhang C (2009) J Hazard Mater 161:21–28

    Article  CAS  Google Scholar 

  35. Zhang C, Shu Y, Wang X, Zhao X, Tan B, Peng R (2005) J Phys Chem A 109:6592–6596

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery AJ, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B.04. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  37. Njegic B, Gordon MS (2006) J Chem Phys 125:224102–224112

    Article  Google Scholar 

  38. Hahre WJ, Radom L, PvR S, Pole JA (1986) Ab Initio Molecular Orbital Theory. Wiley, New York

    Google Scholar 

  39. Jursic BS (2000) J Mol Struct THEOCHEM 499:137–140

    Article  CAS  Google Scholar 

  40. David RL (2003-2004) CRC Handbook of Chemistry and Physics, 84th edn. CRC Press

  41. Materials Studio 4.1 (2004) Accelrys Inc. San Diego, CA

  42. Wang GX, Shi CH, Gong XD, Zhu WH, Xiao HM (2009) J Hazard Mater 169:813–818

    Article  CAS  Google Scholar 

  43. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  44. Akhavan J (1998) Chemistry of explosives. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  45. Stine JR (1981) Los Alamos national Laboratory’s Report, New Mexico

  46. Ammon HL (2001) Struct Chem 12:205–212

    Article  CAS  Google Scholar 

  47. Ehrlich HW (1960) Acta Crystallogr 13:946–952

    Article  CAS  Google Scholar 

  48. Mondal T, Saritha B, Ghanta S, Roy TK, Mahapatra S, Prasad MD (2009) J Mol Struct THEOCHEM 897:42–47

    Article  CAS  Google Scholar 

  49. Goh EM, Cho SG, Park BS (2000) J Def Tech Res 6:91–96

    Google Scholar 

  50. Politzer P, Martinez J, Murray JS, Concha MC (2009) Toro Labbe A 107:2095–2101

    CAS  Google Scholar 

  51. Fukui F, Yonezawa T, Shingu H (1952) J Chem Phys 20:722–725

    Article  CAS  Google Scholar 

  52. Zhou Z, Parr RG (1990) J Am Chem Soc 112:5720–5724

    Article  CAS  Google Scholar 

  53. Pearson RG (1989) J Org Chem 54:1423–1430

    Article  CAS  Google Scholar 

  54. Skinner D, Olson D (1998) Propellants Explos Pyrotech 23:34–42

    Article  CAS  Google Scholar 

  55. Wang G, Xiao H, Ju X, Gong X (2006) Propellants Explos Pyrotech 31:102–109

    Article  CAS  Google Scholar 

  56. Wang G, Xiao H, Ju X, Gong X (2006) Propellants Explos Pyrotech 31:361–368

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the sustaining financial support from Defence Research Development Organisation (DRDO), India through Advanced Centre of Research in High Energy Materials (ACRHEM). Department of Science and Technology (DST), India is thanked for the computational facility at the University of Hyderabad through Centre for Modeling Simulation and Design (CMSD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasupala Ravi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravi, P., Gore, G.M., Tewari, S.P. et al. Quantum chemical studies on the aminopolynitropyrazoles. J Mol Model 17, 2475–2484 (2011). https://doi.org/10.1007/s00894-010-0928-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0928-9

Keywords

Navigation