Skip to main content
Log in

Computational prediction of selectivities in nonreversible and reversible hydroformylation reactions catalyzed by unmodified rhodium-carbonyls

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

An Erratum to this article was published on 11 February 2012

Abstract

The regio- and stereoselectivities of the hydroformylation reaction catalyzed by an unmodified Rh catalyst have been investigated at the B3P86/6-31G* level with Rh described by effective core potentials in the LANL2DZ valence basis set for a number of either mono- or (1,1-, 1,2-, 1,3-) di-substituted substrates and compared with a variety of earlier results of ours, supplemented with free energy results when not already available. The computational prediction of regio- and stereoselectivities in nonreversible hydroformylations performed under mild reaction conditions is seemingly possible provided a careful conformational search for TS structures is carried out and all the low energy conformers are taken into account. The internal energy can be used to compute both the regio- and stereoselectivities in the hydroformylation of 1,1- and 1,3-substituted substrates with satisfactory results, whereas for 1,2-substituted substrates the regioselectivity determined from the internal energy is in good agreement with the experiment in the case of aliphatic olefins just for the lowest terms in the series (i.e., methyl and ethyl substituents), while the ratios are only qualitatively correct for the slightly bulkier iso-propyl and tert-butyl moieties. The theory/experiment agreement becomes decidedly better using the free energy differences instead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Actually a chiral center appears in the hydroformylation of a nonchiral substrate when R (Scheme 1) is an alkyl group greater than CH3 or an aromatic group; the hydroformylation with unmodified rhodium catalysts however produces the racemic branched aldehydes without any stereoselectivity. In contrast, when the substrate is a chiral olefin itself, diastereoselectivity might originate as shown for two 1,3-substituted olefins in Scheme 2; notice that in such cases the total branched population is used to obtain the regioselectivity, because \( {\hbox{b}} + {\hbox{b}}\prime = {\hbox{B}}. \)

  2. The SBK(d) basis set is described in detail in Ref. 11.

  3. In those cases, 36 complex structures can be obtained, nine for each type (b, b’, l, l’). Taking into account the possible switch of the apical CO, as we did, the total number becomes 72.

  4. For the productories, both the B and L values are reported without an identical 10n factor.

References

  1. Anh NT, Eisenstein O (1977) Nouv J Chim 1:61–70

    Google Scholar 

  2. Houk KN (2000) Theor Chem Acc 103:330–331

    Article  CAS  Google Scholar 

  3. Koga N, Jin SQ, Morokuma K (1988) J Am Chem Soc 110:3417–3425

    Article  CAS  Google Scholar 

  4. Matsubara T, Koga N, Ding Y, Musaev DG, Morokuma K (1997) Organometallics 16:1065–1078

    Article  CAS  Google Scholar 

  5. Gleich D, Schmid R, Herrmann WA (1998) Organometallics 17:4828–48347

    Article  CAS  Google Scholar 

  6. Rocha WR, De Almeida WB (1998) Organometallics 17:1961–1967

    Article  CAS  Google Scholar 

  7. Torrent M, Solà M, Frenking G (2000) Chem Rev 100:439–493

    Article  CAS  Google Scholar 

  8. Rocha WR, De Almeida WB (2000) Int J Quantum Chem 78:42–51

    Article  CAS  Google Scholar 

  9. Rocha WR, De Almeida WB (2000) J Comput Chem 21:668–674

    Article  CAS  Google Scholar 

  10. Carbó JJ, Maseras F, Bo C, van Leeuwen PWNM (2001) J Am Chem Soc 123:7630–7637

    Article  Google Scholar 

  11. Decker SA, Cundari TR (2001) Organometallics 20:2827–2841

    Article  CAS  Google Scholar 

  12. Alagona G, Ghio C, Lazzaroni R, Settambolo R (2001) Organometallics 20:5394–5404

    Article  CAS  Google Scholar 

  13. Decker SA, Cundari TR (2002) New J Chem 26:129–135

    Article  CAS  Google Scholar 

  14. Landis CR, Uddin J (2002) J Chem Soc, Dalton Trans:729-742

  15. Alagona G, Ghio C, Lazzaroni R, Settambolo R (2004) Inorg Chim Acta 357:2980–2988

    Article  CAS  Google Scholar 

  16. Rocha WR (2004) J Mol Struct THEOCHEM 677:133–143

    Article  CAS  Google Scholar 

  17. Gleich D, Hutter J (2004) Chem Eur J 10:2435–2444

    Article  CAS  Google Scholar 

  18. Luo M, Tang D, Li M (2005) Int J Quantum Chem 105:108–123

    Article  CAS  Google Scholar 

  19. Alagona G, Ghio C (2005) J Organomet Chem 690:2339–2350

    Article  CAS  Google Scholar 

  20. Settambolo R, Rocchiccioli S, Lazzaroni R, Alagona G (2006) Lett Org Chem 3:10–12

    Article  CAS  Google Scholar 

  21. Sparta M, Børve KJ, Jensen VR (2007) J Am Chem Soc 129:8487–8499

    Article  CAS  Google Scholar 

  22. Alagona G, Ghio C, Rocchiccioli S (2007) J Mol Model 13:823–837

    Article  CAS  Google Scholar 

  23. Ghio C, Lazzaroni R, Alagona G (2009) Eur J Inorg Chem:98-103

  24. Shaharun MS, Dutta BK, Mukhtar H (2009) AIChE J 55:3221–3233

    Article  CAS  Google Scholar 

  25. Tang D, Zhang Y, Hu C (2009) Chin J Chem 27:81–87

    Article  CAS  Google Scholar 

  26. Lazzaroni R, Settambolo R, Alagona G, Ghio C (2010) Coord Chem Rev 254:696–706

    Article  CAS  Google Scholar 

  27. Da Silva JCS, Dias RP, De Almeida WB, Rocha WR (2010) J Comput Chem 31:1986–2000

    Google Scholar 

  28. McQuarrie DA (2000) Statistical mechanics. University Science Book, Sausalito, CA

    Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian Inc, Wallingford, CT

    Google Scholar 

  30. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  31. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  32. Hehre WJ, Radom L, PvR S, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  33. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  35. Lazzaroni R, Settambolo R, Alagona G, Ghio C (manuscript in preparation)

  36. Miller WH (1979) J Am Chem Soc 101:6810–6814

    Article  CAS  Google Scholar 

  37. Rocchiccioli S (2006) Substrate-induced Diastereoselectivity in Rhodium-Catalyzed Hydroformylation. PhD Thesis, University of Pisa

  38. van Leeuwen PWNM, Casey CP, Whiteker GT (2000) in Rhodium Catalyzed Hydroformylation; van Leeuwen PWNM, Claver C (eds) Kluwer CMC, Dordrecht, The Netherlands, p 96

  39. Alagona G, Ghio C (manuscript in preparation)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giuliano Alagona or Caterina Ghio.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00894-012-1373-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alagona, G., Lazzaroni, R. & Ghio, C. Computational prediction of selectivities in nonreversible and reversible hydroformylation reactions catalyzed by unmodified rhodium-carbonyls. J Mol Model 17, 2275–2284 (2011). https://doi.org/10.1007/s00894-010-0864-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0864-8

Keywords

Navigation