Skip to main content
Log in

Polarizability rescaling and atom-based Thole scaling in the CHARMM Drude polarizable force field for ethers

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Within the CHARMM polarizable force field based on the classical Drude oscillator, atomic polarizabilities are derived via fitting to ab initio calculated data on isolated gas phase molecules, with an empirical scaling factor applied to account for differences between the gas and condensed phases. In the development of polarizable models for the ethers, a polarizability scaling factor of 0.7 was previously applied [Vorobyov et al. J Comput Chem 3:1120–1133, 2007]. While the resulting force field models gave good agreement with a variety of experimental data, they systematically underestimated the liquid phase dielectric constants. Here, a new CHARMM polarizable model is developed for the ethers, employing a polarizability scaling factor of 0.85 and including atom-based Thole scale factors recently introduced into the CHARMM Drude polarizable force field [Harder et al. J Phys Chem B 112:3509-3521, 2008]. The new model offers a significant improvement in the reproduction of liquid phase dielectric constants, while maintaining the good agreement of the previous model with all other experimental and quantum mechanical data, highlighting the sensitivity of liquid phase properties to the choice of atomic polarizability parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Drude P (1902) The theory of optics. Green, New York

    Google Scholar 

  2. Vorobyov I, Anisimov VM, Greene S, Venable RM, Moser A, Pastor RW, MacKerell AD (2007) J Chem Theory Comput 3:1120–1133

    Article  CAS  Google Scholar 

  3. Anisimov VM, Lamoureux G, Vorobyov IV, Huang N, Roux B, MacKerell AD (2005) J Chem Theory Comput 1:153–168

    Article  Google Scholar 

  4. Tu Y, Laaksonen A (2000) Chem Phys Lett 329:283–288

    Article  CAS  Google Scholar 

  5. in het Panhuis M, Popelier PLA, Munn RW, Ángyán JG (2001) J Chem Phys 114:7951–7961

    Article  Google Scholar 

  6. Lamoureux G, MacKerell AD , Roux B (2003) J Chem Phys 119:5185–5197

    Article  CAS  Google Scholar 

  7. Kaminski GA, Stern HA, Berne BJ, Friesner RA (2004) J Phys Chem A 108:621–627

    Article  CAS  Google Scholar 

  8. Giese TJ, York DM (2004) J Chem Phys 120:9903–9906

    Article  CAS  Google Scholar 

  9. Schropp B, Tavan P (2008) J Phys Chem B 112:6233–6240

    Article  CAS  Google Scholar 

  10. Morita A (2002) J Comput Chem 23:1466–1471

    Article  CAS  Google Scholar 

  11. Botek E, Giribet C, de Azúa MR, Negri RM, Bernik D (2008) J Phys Chem A 112:6992–6998

    Article  CAS  Google Scholar 

  12. Lamoureux G, Harder E, Vorobyov IV, Roux B, MacKerell AD (2006) Chem Phys Lett 418:245–249

    Article  CAS  Google Scholar 

  13. Lopes PEM, Lamoureux G, MacKerell AD (2009) J Comput Chem 30:1821–1838

    Google Scholar 

  14. Morita A, Kato S (1999) J Chem Phys 110:11987–11998

    Article  CAS  Google Scholar 

  15. Harder E, Anisimov VM, Whitfield T, MacKerell AD , Roux B (2008) J Phys Chem B 112:3509–3521

    Article  CAS  Google Scholar 

  16. Vorobyov IV, Anisimov VM, MacKerell AD (2005) J Phys Chem B 109:18988–18999

    Article  CAS  Google Scholar 

  17. Noskov SY, Lamoureux G, Roux B (2005) J Phys Chem B 109:6705–6713

    Article  CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA , Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Corss JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision D.01. Gaussian Inc, Wallingford, CT

    Google Scholar 

  19. Brooks BR, Brooks CL III, MacKerell AD , Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) J Comput Chem 30:1545–1614

    Article  CAS  Google Scholar 

  20. MacKerell AD , Brooks B, Brooks CL III, Nilsson L, Roux B, Won Y, Karplus M (1998) CHARMM: the energy function and its parameterization with an overview of the program. In: PvR S, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 1. John Wiley and Sons, Chichester, p 271

    Google Scholar 

  21. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  22. Harder E, Anisimov VM, Vorobyov IV, Lopes PEM, Noskov SY, MacKerell AD , Roux B (2006) J Chem Theory Comput 2:1587–1597

    Article  CAS  Google Scholar 

  23. Miller KJ (1990) J Am Chem Soc 112:8533–8542

    Article  CAS  Google Scholar 

  24. Dixon RW, Kollman PA (1997) J Comput Chem 18:1632–1646

    Article  CAS  Google Scholar 

  25. Kollman P (1993) Chem Rev 93:2395–2417

    Article  CAS  Google Scholar 

  26. Deng Y, Roux B (2004) J Phys Chem B 108:16567–16576

    Article  CAS  Google Scholar 

  27. Lagüe P, Pastor RW, Brooks BR (2004) J Phys Chem B 108:363–368

    Article  Google Scholar 

  28. MacKerell AD (2004) J Comput Chem 25:1584–1604

    Article  CAS  Google Scholar 

  29. Anisimov VM, Vorobyov IV, Roux B, MacKerell AD (2007) J Chem Theory Comput 3:1927–1946

    Article  CAS  Google Scholar 

  30. Davis JE, Warren GL, Patel S (2008) J Phys Chem B 112:8298–8310

    Article  CAS  Google Scholar 

  31. Rick SW, Berne BJ (1996) J Am Chem Soc 118:672–679

    Article  CAS  Google Scholar 

  32. Lide DR (ed) (2003) CRC handbook chemistry and physics, 84th edn. Boca Raton, CRC Press

    Google Scholar 

  33. Poling BE, Prausnitz JM, O’Connell JP (2001) The properties of gases and liquids, 5th edn. McGraw-Hill, New York

    Google Scholar 

  34. Wu J, Liu Z, Bi S, Meng X (2003) J Chem Eng Data 48:426–429

    Article  CAS  Google Scholar 

  35. Liu ZY, Chen ZC (1995) Chem Eng J Biochem Eng J 59:127–132

    Article  CAS  Google Scholar 

  36. Kelly CP, Cramer CJ, Truhlar DG (2005) J Chem Theory Comput 1:1133–1152

    Article  CAS  Google Scholar 

  37. Rizzo RC, Aynechi T, Case DA, Kuntz ID (2006) J Chem Theory Comput 2:128–139

    Article  CAS  Google Scholar 

  38. Obama M, Oodera Y, Kohama N, Yanase T, Saito Y, Kusano K (1985) J Chem Eng Data 30:1–5

    Article  CAS  Google Scholar 

  39. Chickos JS, Acree WE (2003) J Phys Chem Ref Data 32:519–878

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Institutes of Health (NIH) for financial support (GM51501, GM07855) and Dr. Igor V. Vorobyov for helpful discussions and access to input scripts and results from previous simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. MacKerell Jr..

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1017 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, C.M., MacKerell, A.D. Polarizability rescaling and atom-based Thole scaling in the CHARMM Drude polarizable force field for ethers. J Mol Model 16, 567–576 (2010). https://doi.org/10.1007/s00894-009-0572-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0572-4

Keywords

Navigation